Metamath Proof Explorer


Theorem isidlc

Description: The predicate "is an ideal of the commutative ring R ". (Contributed by Jeff Madsen, 10-Jun-2010)

Ref Expression
Hypotheses idlval.1 G=1stR
idlval.2 H=2ndR
idlval.3 X=ranG
idlval.4 Z=GIdG
Assertion isidlc RCRingOpsIIdlRIXZIxIyIxGyIzXzHxI

Proof

Step Hyp Ref Expression
1 idlval.1 G=1stR
2 idlval.2 H=2ndR
3 idlval.3 X=ranG
4 idlval.4 Z=GIdG
5 crngorngo RCRingOpsRRingOps
6 1 2 3 4 isidl RRingOpsIIdlRIXZIxIyIxGyIzXzHxIxHzI
7 5 6 syl RCRingOpsIIdlRIXZIxIyIxGyIzXzHxIxHzI
8 ssel2 IXxIxX
9 1 2 3 crngocom RCRingOpsxXzXxHz=zHx
10 9 eleq1d RCRingOpsxXzXxHzIzHxI
11 10 biimprd RCRingOpsxXzXzHxIxHzI
12 11 3expa RCRingOpsxXzXzHxIxHzI
13 12 pm4.71d RCRingOpsxXzXzHxIzHxIxHzI
14 13 bicomd RCRingOpsxXzXzHxIxHzIzHxI
15 14 ralbidva RCRingOpsxXzXzHxIxHzIzXzHxI
16 15 anbi2d RCRingOpsxXyIxGyIzXzHxIxHzIyIxGyIzXzHxI
17 8 16 sylan2 RCRingOpsIXxIyIxGyIzXzHxIxHzIyIxGyIzXzHxI
18 17 anassrs RCRingOpsIXxIyIxGyIzXzHxIxHzIyIxGyIzXzHxI
19 18 ralbidva RCRingOpsIXxIyIxGyIzXzHxIxHzIxIyIxGyIzXzHxI
20 19 adantrr RCRingOpsIXZIxIyIxGyIzXzHxIxHzIxIyIxGyIzXzHxI
21 20 pm5.32da RCRingOpsIXZIxIyIxGyIzXzHxIxHzIIXZIxIyIxGyIzXzHxI
22 df-3an IXZIxIyIxGyIzXzHxIxHzIIXZIxIyIxGyIzXzHxIxHzI
23 df-3an IXZIxIyIxGyIzXzHxIIXZIxIyIxGyIzXzHxI
24 21 22 23 3bitr4g RCRingOpsIXZIxIyIxGyIzXzHxIxHzIIXZIxIyIxGyIzXzHxI
25 7 24 bitrd RCRingOpsIIdlRIXZIxIyIxGyIzXzHxI