Metamath Proof Explorer


Theorem isinv

Description: Value of the inverse relation. (Contributed by Mario Carneiro, 2-Jan-2017)

Ref Expression
Hypotheses invfval.b B=BaseC
invfval.n N=InvC
invfval.c φCCat
invfval.x φXB
invfval.y φYB
invfval.s S=SectC
Assertion isinv φFXNYGFXSYGGYSXF

Proof

Step Hyp Ref Expression
1 invfval.b B=BaseC
2 invfval.n N=InvC
3 invfval.c φCCat
4 invfval.x φXB
5 invfval.y φYB
6 invfval.s S=SectC
7 1 2 3 4 5 6 invfval φXNY=XSYYSX-1
8 7 breqd φFXNYGFXSYYSX-1G
9 brin FXSYYSX-1GFXSYGFYSX-1G
10 8 9 bitrdi φFXNYGFXSYGFYSX-1G
11 eqid HomC=HomC
12 eqid compC=compC
13 eqid IdC=IdC
14 1 11 12 13 6 3 5 4 sectss φYSXYHomCX×XHomCY
15 relxp RelYHomCX×XHomCY
16 relss YSXYHomCX×XHomCYRelYHomCX×XHomCYRelYSX
17 14 15 16 mpisyl φRelYSX
18 relbrcnvg RelYSXFYSX-1GGYSXF
19 17 18 syl φFYSX-1GGYSXF
20 19 anbi2d φFXSYGFYSX-1GFXSYGGYSXF
21 10 20 bitrd φFXNYGFXSYGGYSXF