Metamath Proof Explorer


Theorem islinds2

Description: Expanded property of an independent set of vectors. (Contributed by Stefan O'Rear, 24-Feb-2015)

Ref Expression
Hypotheses islindf.b B = Base W
islindf.v · ˙ = W
islindf.k K = LSpan W
islindf.s S = Scalar W
islindf.n N = Base S
islindf.z 0 ˙ = 0 S
Assertion islinds2 W Y F LIndS W F B x F k N 0 ˙ ¬ k · ˙ x K F x

Proof

Step Hyp Ref Expression
1 islindf.b B = Base W
2 islindf.v · ˙ = W
3 islindf.k K = LSpan W
4 islindf.s S = Scalar W
5 islindf.n N = Base S
6 islindf.z 0 ˙ = 0 S
7 1 islinds W Y F LIndS W F B I F LIndF W
8 1 fvexi B V
9 8 ssex F B F V
10 9 adantl W Y F B F V
11 resiexg F V I F V
12 10 11 syl W Y F B I F V
13 1 2 3 4 5 6 islindf W Y I F V I F LIndF W I F : dom I F B x dom I F k N 0 ˙ ¬ k · ˙ I F x K I F dom I F x
14 12 13 syldan W Y F B I F LIndF W I F : dom I F B x dom I F k N 0 ˙ ¬ k · ˙ I F x K I F dom I F x
15 14 pm5.32da W Y F B I F LIndF W F B I F : dom I F B x dom I F k N 0 ˙ ¬ k · ˙ I F x K I F dom I F x
16 dmresi dom I F = F
17 16 raleqi x dom I F k N 0 ˙ ¬ k · ˙ I F x K I F dom I F x x F k N 0 ˙ ¬ k · ˙ I F x K I F dom I F x
18 fvresi x F I F x = x
19 18 oveq2d x F k · ˙ I F x = k · ˙ x
20 16 difeq1i dom I F x = F x
21 20 imaeq2i I F dom I F x = I F F x
22 difss F x F
23 resiima F x F I F F x = F x
24 22 23 ax-mp I F F x = F x
25 21 24 eqtri I F dom I F x = F x
26 25 fveq2i K I F dom I F x = K F x
27 26 a1i x F K I F dom I F x = K F x
28 19 27 eleq12d x F k · ˙ I F x K I F dom I F x k · ˙ x K F x
29 28 notbid x F ¬ k · ˙ I F x K I F dom I F x ¬ k · ˙ x K F x
30 29 ralbidv x F k N 0 ˙ ¬ k · ˙ I F x K I F dom I F x k N 0 ˙ ¬ k · ˙ x K F x
31 30 ralbiia x F k N 0 ˙ ¬ k · ˙ I F x K I F dom I F x x F k N 0 ˙ ¬ k · ˙ x K F x
32 17 31 bitri x dom I F k N 0 ˙ ¬ k · ˙ I F x K I F dom I F x x F k N 0 ˙ ¬ k · ˙ x K F x
33 32 anbi2i I F : dom I F B x dom I F k N 0 ˙ ¬ k · ˙ I F x K I F dom I F x I F : dom I F B x F k N 0 ˙ ¬ k · ˙ x K F x
34 f1oi I F : F 1-1 onto F
35 f1of I F : F 1-1 onto F I F : F F
36 34 35 ax-mp I F : F F
37 16 feq2i I F : dom I F F I F : F F
38 36 37 mpbir I F : dom I F F
39 fss I F : dom I F F F B I F : dom I F B
40 38 39 mpan F B I F : dom I F B
41 40 biantrurd F B x F k N 0 ˙ ¬ k · ˙ x K F x I F : dom I F B x F k N 0 ˙ ¬ k · ˙ x K F x
42 33 41 bitr4id F B I F : dom I F B x dom I F k N 0 ˙ ¬ k · ˙ I F x K I F dom I F x x F k N 0 ˙ ¬ k · ˙ x K F x
43 42 pm5.32i F B I F : dom I F B x dom I F k N 0 ˙ ¬ k · ˙ I F x K I F dom I F x F B x F k N 0 ˙ ¬ k · ˙ x K F x
44 43 a1i W Y F B I F : dom I F B x dom I F k N 0 ˙ ¬ k · ˙ I F x K I F dom I F x F B x F k N 0 ˙ ¬ k · ˙ x K F x
45 7 15 44 3bitrd W Y F LIndS W F B x F k N 0 ˙ ¬ k · ˙ x K F x