Metamath Proof Explorer


Theorem islinds2

Description: Expanded property of an independent set of vectors. (Contributed by Stefan O'Rear, 24-Feb-2015)

Ref Expression
Hypotheses islindf.b B=BaseW
islindf.v ·˙=W
islindf.k K=LSpanW
islindf.s S=ScalarW
islindf.n N=BaseS
islindf.z 0˙=0S
Assertion islinds2 WYFLIndSWFBxFkN0˙¬k·˙xKFx

Proof

Step Hyp Ref Expression
1 islindf.b B=BaseW
2 islindf.v ·˙=W
3 islindf.k K=LSpanW
4 islindf.s S=ScalarW
5 islindf.n N=BaseS
6 islindf.z 0˙=0S
7 1 islinds WYFLIndSWFBIFLIndFW
8 1 fvexi BV
9 8 ssex FBFV
10 9 adantl WYFBFV
11 resiexg FVIFV
12 10 11 syl WYFBIFV
13 1 2 3 4 5 6 islindf WYIFVIFLIndFWIF:domIFBxdomIFkN0˙¬k·˙IFxKIFdomIFx
14 12 13 syldan WYFBIFLIndFWIF:domIFBxdomIFkN0˙¬k·˙IFxKIFdomIFx
15 14 pm5.32da WYFBIFLIndFWFBIF:domIFBxdomIFkN0˙¬k·˙IFxKIFdomIFx
16 dmresi domIF=F
17 16 raleqi xdomIFkN0˙¬k·˙IFxKIFdomIFxxFkN0˙¬k·˙IFxKIFdomIFx
18 fvresi xFIFx=x
19 18 oveq2d xFk·˙IFx=k·˙x
20 16 difeq1i domIFx=Fx
21 20 imaeq2i IFdomIFx=IFFx
22 difss FxF
23 resiima FxFIFFx=Fx
24 22 23 ax-mp IFFx=Fx
25 21 24 eqtri IFdomIFx=Fx
26 25 fveq2i KIFdomIFx=KFx
27 26 a1i xFKIFdomIFx=KFx
28 19 27 eleq12d xFk·˙IFxKIFdomIFxk·˙xKFx
29 28 notbid xF¬k·˙IFxKIFdomIFx¬k·˙xKFx
30 29 ralbidv xFkN0˙¬k·˙IFxKIFdomIFxkN0˙¬k·˙xKFx
31 30 ralbiia xFkN0˙¬k·˙IFxKIFdomIFxxFkN0˙¬k·˙xKFx
32 17 31 bitri xdomIFkN0˙¬k·˙IFxKIFdomIFxxFkN0˙¬k·˙xKFx
33 32 anbi2i IF:domIFBxdomIFkN0˙¬k·˙IFxKIFdomIFxIF:domIFBxFkN0˙¬k·˙xKFx
34 f1oi IF:F1-1 ontoF
35 f1of IF:F1-1 ontoFIF:FF
36 34 35 ax-mp IF:FF
37 16 feq2i IF:domIFFIF:FF
38 36 37 mpbir IF:domIFF
39 fss IF:domIFFFBIF:domIFB
40 38 39 mpan FBIF:domIFB
41 40 biantrurd FBxFkN0˙¬k·˙xKFxIF:domIFBxFkN0˙¬k·˙xKFx
42 33 41 bitr4id FBIF:domIFBxdomIFkN0˙¬k·˙IFxKIFdomIFxxFkN0˙¬k·˙xKFx
43 42 pm5.32i FBIF:domIFBxdomIFkN0˙¬k·˙IFxKIFdomIFxFBxFkN0˙¬k·˙xKFx
44 43 a1i WYFBIF:domIFBxdomIFkN0˙¬k·˙IFxKIFdomIFxFBxFkN0˙¬k·˙xKFx
45 7 15 44 3bitrd WYFLIndSWFBxFkN0˙¬k·˙xKFx