Metamath Proof Explorer


Theorem islring

Description: The predicate "is a local ring". (Contributed by SN, 23-Feb-2025)

Ref Expression
Hypotheses islring.b B=BaseR
islring.a +˙=+R
islring.1 1˙=1R
islring.u U=UnitR
Assertion islring Could not format assertion : No typesetting found for |- ( R e. LRing <-> ( R e. NzRing /\ A. x e. B A. y e. B ( ( x .+ y ) = .1. -> ( x e. U \/ y e. U ) ) ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 islring.b B=BaseR
2 islring.a +˙=+R
3 islring.1 1˙=1R
4 islring.u U=UnitR
5 fveq2 r=RBaser=BaseR
6 5 1 eqtr4di r=RBaser=B
7 fveq2 r=R+r=+R
8 7 2 eqtr4di r=R+r=+˙
9 8 oveqd r=Rx+ry=x+˙y
10 fveq2 r=R1r=1R
11 10 3 eqtr4di r=R1r=1˙
12 9 11 eqeq12d r=Rx+ry=1rx+˙y=1˙
13 fveq2 r=RUnitr=UnitR
14 13 4 eqtr4di r=RUnitr=U
15 14 eleq2d r=RxUnitrxU
16 14 eleq2d r=RyUnitryU
17 15 16 orbi12d r=RxUnitryUnitrxUyU
18 12 17 imbi12d r=Rx+ry=1rxUnitryUnitrx+˙y=1˙xUyU
19 6 18 raleqbidv r=RyBaserx+ry=1rxUnitryUnitryBx+˙y=1˙xUyU
20 6 19 raleqbidv r=RxBaseryBaserx+ry=1rxUnitryUnitrxByBx+˙y=1˙xUyU
21 df-lring Could not format LRing = { r e. NzRing | A. x e. ( Base ` r ) A. y e. ( Base ` r ) ( ( x ( +g ` r ) y ) = ( 1r ` r ) -> ( x e. ( Unit ` r ) \/ y e. ( Unit ` r ) ) ) } : No typesetting found for |- LRing = { r e. NzRing | A. x e. ( Base ` r ) A. y e. ( Base ` r ) ( ( x ( +g ` r ) y ) = ( 1r ` r ) -> ( x e. ( Unit ` r ) \/ y e. ( Unit ` r ) ) ) } with typecode |-
22 20 21 elrab2 Could not format ( R e. LRing <-> ( R e. NzRing /\ A. x e. B A. y e. B ( ( x .+ y ) = .1. -> ( x e. U \/ y e. U ) ) ) ) : No typesetting found for |- ( R e. LRing <-> ( R e. NzRing /\ A. x e. B A. y e. B ( ( x .+ y ) = .1. -> ( x e. U \/ y e. U ) ) ) ) with typecode |-