Metamath Proof Explorer


Theorem ismbfcn2

Description: A complex function is measurable iff the real and imaginary components of the function are measurable. (Contributed by Mario Carneiro, 13-Aug-2014)

Ref Expression
Hypothesis ismbfcn2.1 φxAB
Assertion ismbfcn2 φxABMblFnxABMblFnxABMblFn

Proof

Step Hyp Ref Expression
1 ismbfcn2.1 φxAB
2 1 fmpttd φxAB:A
3 ismbfcn xAB:AxABMblFnxABMblFnxABMblFn
4 2 3 syl φxABMblFnxABMblFnxABMblFn
5 ref :
6 5 a1i φ:
7 6 1 cofmpt φxAB=xAB
8 7 eleq1d φxABMblFnxABMblFn
9 imf :
10 9 a1i φ:
11 10 1 cofmpt φxAB=xAB
12 11 eleq1d φxABMblFnxABMblFn
13 8 12 anbi12d φxABMblFnxABMblFnxABMblFnxABMblFn
14 4 13 bitrd φxABMblFnxABMblFnxABMblFn