Metamath Proof Explorer


Theorem ismgm

Description: The predicate "is a magma". (Contributed by FL, 2-Nov-2009) (Revised by AV, 6-Jan-2020)

Ref Expression
Hypotheses ismgm.b B=BaseM
ismgm.o No typesetting found for |- .o. = ( +g ` M ) with typecode |-
Assertion ismgm Could not format assertion : No typesetting found for |- ( M e. V -> ( M e. Mgm <-> A. x e. B A. y e. B ( x .o. y ) e. B ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 ismgm.b B=BaseM
2 ismgm.o Could not format .o. = ( +g ` M ) : No typesetting found for |- .o. = ( +g ` M ) with typecode |-
3 fvexd m=MBasemV
4 fveq2 m=MBasem=BaseM
5 4 1 eqtr4di m=MBasem=B
6 fvexd m=Mb=B+mV
7 fveq2 m=M+m=+M
8 7 adantr m=Mb=B+m=+M
9 8 2 eqtr4di Could not format ( ( m = M /\ b = B ) -> ( +g ` m ) = .o. ) : No typesetting found for |- ( ( m = M /\ b = B ) -> ( +g ` m ) = .o. ) with typecode |-
10 simplr Could not format ( ( ( m = M /\ b = B ) /\ o = .o. ) -> b = B ) : No typesetting found for |- ( ( ( m = M /\ b = B ) /\ o = .o. ) -> b = B ) with typecode |-
11 oveq Could not format ( o = .o. -> ( x o y ) = ( x .o. y ) ) : No typesetting found for |- ( o = .o. -> ( x o y ) = ( x .o. y ) ) with typecode |-
12 11 adantl Could not format ( ( ( m = M /\ b = B ) /\ o = .o. ) -> ( x o y ) = ( x .o. y ) ) : No typesetting found for |- ( ( ( m = M /\ b = B ) /\ o = .o. ) -> ( x o y ) = ( x .o. y ) ) with typecode |-
13 12 10 eleq12d Could not format ( ( ( m = M /\ b = B ) /\ o = .o. ) -> ( ( x o y ) e. b <-> ( x .o. y ) e. B ) ) : No typesetting found for |- ( ( ( m = M /\ b = B ) /\ o = .o. ) -> ( ( x o y ) e. b <-> ( x .o. y ) e. B ) ) with typecode |-
14 10 13 raleqbidv Could not format ( ( ( m = M /\ b = B ) /\ o = .o. ) -> ( A. y e. b ( x o y ) e. b <-> A. y e. B ( x .o. y ) e. B ) ) : No typesetting found for |- ( ( ( m = M /\ b = B ) /\ o = .o. ) -> ( A. y e. b ( x o y ) e. b <-> A. y e. B ( x .o. y ) e. B ) ) with typecode |-
15 10 14 raleqbidv Could not format ( ( ( m = M /\ b = B ) /\ o = .o. ) -> ( A. x e. b A. y e. b ( x o y ) e. b <-> A. x e. B A. y e. B ( x .o. y ) e. B ) ) : No typesetting found for |- ( ( ( m = M /\ b = B ) /\ o = .o. ) -> ( A. x e. b A. y e. b ( x o y ) e. b <-> A. x e. B A. y e. B ( x .o. y ) e. B ) ) with typecode |-
16 6 9 15 sbcied2 Could not format ( ( m = M /\ b = B ) -> ( [. ( +g ` m ) / o ]. A. x e. b A. y e. b ( x o y ) e. b <-> A. x e. B A. y e. B ( x .o. y ) e. B ) ) : No typesetting found for |- ( ( m = M /\ b = B ) -> ( [. ( +g ` m ) / o ]. A. x e. b A. y e. b ( x o y ) e. b <-> A. x e. B A. y e. B ( x .o. y ) e. B ) ) with typecode |-
17 3 5 16 sbcied2 Could not format ( m = M -> ( [. ( Base ` m ) / b ]. [. ( +g ` m ) / o ]. A. x e. b A. y e. b ( x o y ) e. b <-> A. x e. B A. y e. B ( x .o. y ) e. B ) ) : No typesetting found for |- ( m = M -> ( [. ( Base ` m ) / b ]. [. ( +g ` m ) / o ]. A. x e. b A. y e. b ( x o y ) e. b <-> A. x e. B A. y e. B ( x .o. y ) e. B ) ) with typecode |-
18 df-mgm Mgm=m|[˙Basem/b]˙[˙+m/o]˙xbybxoyb
19 17 18 elab2g Could not format ( M e. V -> ( M e. Mgm <-> A. x e. B A. y e. B ( x .o. y ) e. B ) ) : No typesetting found for |- ( M e. V -> ( M e. Mgm <-> A. x e. B A. y e. B ( x .o. y ) e. B ) ) with typecode |-