Metamath Proof Explorer


Theorem ismntop

Description: Property of being a manifold. (Contributed by Thierry Arnoux, 5-Jan-2020)

Ref Expression
Assertion ismntop N0JVNManTopJJ2nd𝜔JHausxJyxuJ𝒫xyuJ𝑡uTopOpen𝔼hilN

Proof

Step Hyp Ref Expression
1 ismntoplly N0JVNManTopJJ2nd𝜔JHausJLocally TopOpen𝔼hilN
2 haustop JHausJTop
3 2 adantl N0JHausJTop
4 3 biantrurd N0JHausxJyxuJ𝒫xyuJ𝑡uTopOpen𝔼hilNJTopxJyxuJ𝒫xyuJ𝑡uTopOpen𝔼hilN
5 hmpher ErTop
6 errel ErTopRel
7 relelec RelJ𝑡uTopOpen𝔼hilNTopOpen𝔼hilNJ𝑡u
8 5 6 7 mp2b J𝑡uTopOpen𝔼hilNTopOpen𝔼hilNJ𝑡u
9 hmphsymb TopOpen𝔼hilNJ𝑡uJ𝑡uTopOpen𝔼hilN
10 8 9 bitr2i J𝑡uTopOpen𝔼hilNJ𝑡uTopOpen𝔼hilN
11 10 a1i N0JHausJ𝑡uTopOpen𝔼hilNJ𝑡uTopOpen𝔼hilN
12 11 anbi2d N0JHausyuJ𝑡uTopOpen𝔼hilNyuJ𝑡uTopOpen𝔼hilN
13 12 rexbidv N0JHausuJ𝒫xyuJ𝑡uTopOpen𝔼hilNuJ𝒫xyuJ𝑡uTopOpen𝔼hilN
14 13 2ralbidv N0JHausxJyxuJ𝒫xyuJ𝑡uTopOpen𝔼hilNxJyxuJ𝒫xyuJ𝑡uTopOpen𝔼hilN
15 islly JLocally TopOpen𝔼hilN JTopxJyxuJ𝒫xyuJ𝑡uTopOpen𝔼hilN
16 15 a1i N0JHausJLocally TopOpen𝔼hilN JTopxJyxuJ𝒫xyuJ𝑡uTopOpen𝔼hilN
17 4 14 16 3bitr4rd N0JHausJLocally TopOpen𝔼hilN xJyxuJ𝒫xyuJ𝑡uTopOpen𝔼hilN
18 17 pm5.32da N0JHausJLocally TopOpen𝔼hilN JHausxJyxuJ𝒫xyuJ𝑡uTopOpen𝔼hilN
19 18 anbi2d N0J2nd𝜔JHausJLocally TopOpen𝔼hilN J2nd𝜔JHausxJyxuJ𝒫xyuJ𝑡uTopOpen𝔼hilN
20 3anass J2nd𝜔JHausJLocally TopOpen𝔼hilN J2nd𝜔JHausJLocally TopOpen𝔼hilN
21 3anass J2nd𝜔JHausxJyxuJ𝒫xyuJ𝑡uTopOpen𝔼hilNJ2nd𝜔JHausxJyxuJ𝒫xyuJ𝑡uTopOpen𝔼hilN
22 19 20 21 3bitr4g N0J2nd𝜔JHausJLocally TopOpen𝔼hilN J2nd𝜔JHausxJyxuJ𝒫xyuJ𝑡uTopOpen𝔼hilN
23 22 adantr N0JVJ2nd𝜔JHausJLocally TopOpen𝔼hilN J2nd𝜔JHausxJyxuJ𝒫xyuJ𝑡uTopOpen𝔼hilN
24 1 23 bitrd N0JVNManTopJJ2nd𝜔JHausxJyxuJ𝒫xyuJ𝑡uTopOpen𝔼hilN