Metamath Proof Explorer


Theorem isncvsngpd

Description: Properties that determine a normed subcomplex vector space. (Contributed by NM, 15-Apr-2007) (Revised by AV, 7-Oct-2021)

Ref Expression
Hypotheses isncvsngp.v V = Base W
isncvsngp.n N = norm W
isncvsngp.s · ˙ = W
isncvsngp.f F = Scalar W
isncvsngp.k K = Base F
isncvsngpd.v φ W ℂVec
isncvsngpd.g φ W NrmGrp
isncvsngpd.t φ x V k K N k · ˙ x = k N x
Assertion isncvsngpd φ W NrmVec ℂVec

Proof

Step Hyp Ref Expression
1 isncvsngp.v V = Base W
2 isncvsngp.n N = norm W
3 isncvsngp.s · ˙ = W
4 isncvsngp.f F = Scalar W
5 isncvsngp.k K = Base F
6 isncvsngpd.v φ W ℂVec
7 isncvsngpd.g φ W NrmGrp
8 isncvsngpd.t φ x V k K N k · ˙ x = k N x
9 8 ralrimivva φ x V k K N k · ˙ x = k N x
10 1 2 3 4 5 isncvsngp W NrmVec ℂVec W ℂVec W NrmGrp x V k K N k · ˙ x = k N x
11 6 7 9 10 syl3anbrc φ W NrmVec ℂVec