Metamath Proof Explorer


Theorem isrim0

Description: A ring isomorphism is a homomorphism whose converse is also a homomorphism. Compare isgim2 . (Contributed by AV, 22-Oct-2019) Remove sethood antecedent. (Revised by SN, 10-Jan-2025)

Ref Expression
Assertion isrim0 FRRingIsoSFRRingHomSF-1SRingHomR

Proof

Step Hyp Ref Expression
1 rimrcl FRRingIsoSRVSV
2 rhmrcl1 FRRingHomSRRing
3 2 elexd FRRingHomSRV
4 rhmrcl2 FRRingHomSSRing
5 4 elexd FRRingHomSSV
6 3 5 jca FRRingHomSRVSV
7 6 adantr FRRingHomSF-1SRingHomRRVSV
8 df-rngiso RingIso=rV,sVfrRingHoms|f-1sRingHomr
9 8 a1i RVSVRingIso=rV,sVfrRingHoms|f-1sRingHomr
10 oveq12 r=Rs=SrRingHoms=RRingHomS
11 10 adantl RVSVr=Rs=SrRingHoms=RRingHomS
12 oveq12 s=Sr=RsRingHomr=SRingHomR
13 12 ancoms r=Rs=SsRingHomr=SRingHomR
14 13 adantl RVSVr=Rs=SsRingHomr=SRingHomR
15 14 eleq2d RVSVr=Rs=Sf-1sRingHomrf-1SRingHomR
16 11 15 rabeqbidv RVSVr=Rs=SfrRingHoms|f-1sRingHomr=fRRingHomS|f-1SRingHomR
17 simpl RVSVRV
18 simpr RVSVSV
19 ovex RRingHomSV
20 19 rabex fRRingHomS|f-1SRingHomRV
21 20 a1i RVSVfRRingHomS|f-1SRingHomRV
22 9 16 17 18 21 ovmpod RVSVRRingIsoS=fRRingHomS|f-1SRingHomR
23 22 eleq2d RVSVFRRingIsoSFfRRingHomS|f-1SRingHomR
24 cnveq f=Ff-1=F-1
25 24 eleq1d f=Ff-1SRingHomRF-1SRingHomR
26 25 elrab FfRRingHomS|f-1SRingHomRFRRingHomSF-1SRingHomR
27 23 26 bitrdi RVSVFRRingIsoSFRRingHomSF-1SRingHomR
28 1 7 27 pm5.21nii FRRingIsoSFRRingHomSF-1SRingHomR