Description: A ring isomorphism is a homomorphism whose converse is also a homomorphism. Compare isgim2 . (Contributed by AV, 22-Oct-2019) Remove sethood antecedent. (Revised by SN, 10-Jan-2025)
Ref | Expression | ||
---|---|---|---|
Assertion | isrim0 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rimrcl | |
|
2 | rhmrcl1 | |
|
3 | 2 | elexd | |
4 | rhmrcl2 | |
|
5 | 4 | elexd | |
6 | 3 5 | jca | |
7 | 6 | adantr | |
8 | df-rngiso | |
|
9 | 8 | a1i | |
10 | oveq12 | |
|
11 | 10 | adantl | |
12 | oveq12 | |
|
13 | 12 | ancoms | |
14 | 13 | adantl | |
15 | 14 | eleq2d | |
16 | 11 15 | rabeqbidv | |
17 | simpl | |
|
18 | simpr | |
|
19 | ovex | |
|
20 | 19 | rabex | |
21 | 20 | a1i | |
22 | 9 16 17 18 21 | ovmpod | |
23 | 22 | eleq2d | |
24 | cnveq | |
|
25 | 24 | eleq1d | |
26 | 25 | elrab | |
27 | 23 26 | bitrdi | |
28 | 1 7 27 | pm5.21nii | |