Metamath Proof Explorer


Theorem isrim0OLD

Description: Obsolete version of isrim0 as of 12-Jan-2025. (Contributed by AV, 22-Oct-2019) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion isrim0OLD RVSWFRRingIsoSFRRingHomSF-1SRingHomR

Proof

Step Hyp Ref Expression
1 df-rim RingIso=rV,sVfrRingHoms|f-1sRingHomr
2 1 a1i RVSWRingIso=rV,sVfrRingHoms|f-1sRingHomr
3 oveq12 r=Rs=SrRingHoms=RRingHomS
4 3 adantl RVSWr=Rs=SrRingHoms=RRingHomS
5 oveq12 s=Sr=RsRingHomr=SRingHomR
6 5 ancoms r=Rs=SsRingHomr=SRingHomR
7 6 adantl RVSWr=Rs=SsRingHomr=SRingHomR
8 7 eleq2d RVSWr=Rs=Sf-1sRingHomrf-1SRingHomR
9 4 8 rabeqbidv RVSWr=Rs=SfrRingHoms|f-1sRingHomr=fRRingHomS|f-1SRingHomR
10 elex RVRV
11 10 adantr RVSWRV
12 elex SWSV
13 12 adantl RVSWSV
14 ovex RRingHomSV
15 14 rabex fRRingHomS|f-1SRingHomRV
16 15 a1i RVSWfRRingHomS|f-1SRingHomRV
17 2 9 11 13 16 ovmpod RVSWRRingIsoS=fRRingHomS|f-1SRingHomR
18 17 eleq2d RVSWFRRingIsoSFfRRingHomS|f-1SRingHomR
19 cnveq f=Ff-1=F-1
20 19 eleq1d f=Ff-1SRingHomRF-1SRingHomR
21 20 elrab FfRRingHomS|f-1SRingHomRFRRingHomSF-1SRingHomR
22 18 21 bitrdi RVSWFRRingIsoSFRRingHomSF-1SRingHomR