Metamath Proof Explorer


Theorem isrnghmmul

Description: A function is a non-unital ring homomorphism iff it preserves both addition and multiplication. (Contributed by AV, 27-Feb-2020)

Ref Expression
Hypotheses isrnghmmul.m M=mulGrpR
isrnghmmul.n N=mulGrpS
Assertion isrnghmmul FRRngHomoSRRngSRngFRGrpHomSFMMgmHomN

Proof

Step Hyp Ref Expression
1 isrnghmmul.m M=mulGrpR
2 isrnghmmul.n N=mulGrpS
3 eqid BaseR=BaseR
4 eqid R=R
5 eqid S=S
6 3 4 5 isrnghm FRRngHomoSRRngSRngFRGrpHomSxBaseRyBaseRFxRy=FxSFy
7 1 rngmgp Could not format ( R e. Rng -> M e. Smgrp ) : No typesetting found for |- ( R e. Rng -> M e. Smgrp ) with typecode |-
8 sgrpmgm Could not format ( M e. Smgrp -> M e. Mgm ) : No typesetting found for |- ( M e. Smgrp -> M e. Mgm ) with typecode |-
9 7 8 syl RRngMMgm
10 2 rngmgp Could not format ( S e. Rng -> N e. Smgrp ) : No typesetting found for |- ( S e. Rng -> N e. Smgrp ) with typecode |-
11 sgrpmgm Could not format ( N e. Smgrp -> N e. Mgm ) : No typesetting found for |- ( N e. Smgrp -> N e. Mgm ) with typecode |-
12 10 11 syl SRngNMgm
13 9 12 anim12i RRngSRngMMgmNMgm
14 eqid BaseS=BaseS
15 3 14 ghmf FRGrpHomSF:BaseRBaseS
16 13 15 anim12i RRngSRngFRGrpHomSMMgmNMgmF:BaseRBaseS
17 16 biantrurd RRngSRngFRGrpHomSxBaseRyBaseRFxRy=FxSFyMMgmNMgmF:BaseRBaseSxBaseRyBaseRFxRy=FxSFy
18 anass MMgmNMgmF:BaseRBaseSxBaseRyBaseRFxRy=FxSFyMMgmNMgmF:BaseRBaseSxBaseRyBaseRFxRy=FxSFy
19 17 18 bitrdi RRngSRngFRGrpHomSxBaseRyBaseRFxRy=FxSFyMMgmNMgmF:BaseRBaseSxBaseRyBaseRFxRy=FxSFy
20 1 3 mgpbas BaseR=BaseM
21 2 14 mgpbas BaseS=BaseN
22 1 4 mgpplusg R=+M
23 2 5 mgpplusg S=+N
24 20 21 22 23 ismgmhm FMMgmHomNMMgmNMgmF:BaseRBaseSxBaseRyBaseRFxRy=FxSFy
25 19 24 bitr4di RRngSRngFRGrpHomSxBaseRyBaseRFxRy=FxSFyFMMgmHomN
26 25 pm5.32da RRngSRngFRGrpHomSxBaseRyBaseRFxRy=FxSFyFRGrpHomSFMMgmHomN
27 26 pm5.32i RRngSRngFRGrpHomSxBaseRyBaseRFxRy=FxSFyRRngSRngFRGrpHomSFMMgmHomN
28 6 27 bitri FRRngHomoSRRngSRngFRGrpHomSFMMgmHomN