| Step | Hyp | Ref | Expression | 
						
							| 1 |  | issalnnd.s |  | 
						
							| 2 |  | issalnnd.z |  | 
						
							| 3 |  | issalnnd.x |  | 
						
							| 4 |  | issalnnd.d |  | 
						
							| 5 |  | issalnnd.i |  | 
						
							| 6 |  | unieq |  | 
						
							| 7 |  | uni0 |  | 
						
							| 8 | 7 | a1i |  | 
						
							| 9 | 6 8 | eqtrd |  | 
						
							| 10 | 9 | adantl |  | 
						
							| 11 | 2 | adantr |  | 
						
							| 12 | 10 11 | eqeltrd |  | 
						
							| 13 | 12 | 3ad2antl1 |  | 
						
							| 14 |  | neqne |  | 
						
							| 15 | 14 | adantl |  | 
						
							| 16 |  | nnfoctb |  | 
						
							| 17 | 16 | 3ad2antl3 |  | 
						
							| 18 |  | founiiun |  | 
						
							| 19 | 18 | adantl |  | 
						
							| 20 |  | simpll |  | 
						
							| 21 |  | fof |  | 
						
							| 22 | 21 | adantl |  | 
						
							| 23 |  | elpwi |  | 
						
							| 24 | 23 | adantr |  | 
						
							| 25 | 22 24 | fssd |  | 
						
							| 26 | 25 | adantll |  | 
						
							| 27 | 20 26 5 | syl2anc |  | 
						
							| 28 | 19 27 | eqeltrd |  | 
						
							| 29 | 28 | ex |  | 
						
							| 30 | 29 | adantr |  | 
						
							| 31 | 30 | 3adantl3 |  | 
						
							| 32 | 31 | exlimdv |  | 
						
							| 33 | 17 32 | mpd |  | 
						
							| 34 | 15 33 | syldan |  | 
						
							| 35 | 13 34 | pm2.61dan |  | 
						
							| 36 | 1 2 3 4 35 | issald |  |