Metamath Proof Explorer


Theorem ist0-3

Description: The predicate "is a T_0 space" expressed in more familiar terms. (Contributed by Jeff Hankins, 1-Feb-2010)

Ref Expression
Assertion ist0-3 JTopOnXJKol2xXyXxyoJxo¬yo¬xoyo

Proof

Step Hyp Ref Expression
1 ist0-2 JTopOnXJKol2xXyXoJxoyox=y
2 con34b oJxoyox=y¬x=y¬oJxoyo
3 df-ne xy¬x=y
4 xor ¬xoyoxo¬yoyo¬xo
5 ancom yo¬xo¬xoyo
6 5 orbi2i xo¬yoyo¬xoxo¬yo¬xoyo
7 4 6 bitri ¬xoyoxo¬yo¬xoyo
8 7 rexbii oJ¬xoyooJxo¬yo¬xoyo
9 rexnal oJ¬xoyo¬oJxoyo
10 8 9 bitr3i oJxo¬yo¬xoyo¬oJxoyo
11 3 10 imbi12i xyoJxo¬yo¬xoyo¬x=y¬oJxoyo
12 2 11 bitr4i oJxoyox=yxyoJxo¬yo¬xoyo
13 12 2ralbii xXyXoJxoyox=yxXyXxyoJxo¬yo¬xoyo
14 1 13 bitrdi JTopOnXJKol2xXyXxyoJxo¬yo¬xoyo