Metamath Proof Explorer


Theorem ist1-3

Description: A space is T_1 iff every point is the only point in the intersection of all open sets containing that point. (Contributed by Jeff Hankins, 31-Jan-2010) (Proof shortened by Mario Carneiro, 24-Aug-2015)

Ref Expression
Assertion ist1-3 JTopOnXJFrexXoJ|xo=x

Proof

Step Hyp Ref Expression
1 ist1-2 JTopOnXJFrexXyXoJxoyox=y
2 toponmax JTopOnXXJ
3 eleq2 o=XxoxX
4 3 intminss XJxXoJ|xoX
5 2 4 sylan JTopOnXxXoJ|xoX
6 5 sselda JTopOnXxXyoJ|xoyX
7 biimt yXyxyXyx
8 6 7 syl JTopOnXxXyoJ|xoyxyXyx
9 8 ralbidva JTopOnXxXyoJ|xoyxyoJ|xoyXyx
10 id xoxo
11 10 rgenw oJxoxo
12 vex xV
13 12 elintrab xoJ|xooJxoxo
14 11 13 mpbir xoJ|xo
15 snssi xoJ|xoxoJ|xo
16 14 15 ax-mp xoJ|xo
17 eqss oJ|xo=xoJ|xoxxoJ|xo
18 16 17 mpbiran2 oJ|xo=xoJ|xox
19 dfss3 oJ|xoxyoJ|xoyx
20 18 19 bitri oJ|xo=xyoJ|xoyx
21 vex yV
22 21 elintrab yoJ|xooJxoyo
23 velsn yxy=x
24 equcom y=xx=y
25 23 24 bitri yxx=y
26 22 25 imbi12i yoJ|xoyxoJxoyox=y
27 26 ralbii yXyoJ|xoyxyXoJxoyox=y
28 ralcom3 yXyoJ|xoyxyoJ|xoyXyx
29 27 28 bitr3i yXoJxoyox=yyoJ|xoyXyx
30 9 20 29 3bitr4g JTopOnXxXoJ|xo=xyXoJxoyox=y
31 30 ralbidva JTopOnXxXoJ|xo=xxXyXoJxoyox=y
32 1 31 bitr4d JTopOnXJFrexXoJ|xo=x