Description: A space is T_1 iff every point is the only point in the intersection of all open sets containing that point. (Contributed by Jeff Hankins, 31-Jan-2010) (Proof shortened by Mario Carneiro, 24-Aug-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | ist1-3 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ist1-2 | |
|
2 | toponmax | |
|
3 | eleq2 | |
|
4 | 3 | intminss | |
5 | 2 4 | sylan | |
6 | 5 | sselda | |
7 | biimt | |
|
8 | 6 7 | syl | |
9 | 8 | ralbidva | |
10 | id | |
|
11 | 10 | rgenw | |
12 | vex | |
|
13 | 12 | elintrab | |
14 | 11 13 | mpbir | |
15 | snssi | |
|
16 | 14 15 | ax-mp | |
17 | eqss | |
|
18 | 16 17 | mpbiran2 | |
19 | dfss3 | |
|
20 | 18 19 | bitri | |
21 | vex | |
|
22 | 21 | elintrab | |
23 | velsn | |
|
24 | equcom | |
|
25 | 23 24 | bitri | |
26 | 22 25 | imbi12i | |
27 | 26 | ralbii | |
28 | ralcom3 | |
|
29 | 27 28 | bitr3i | |
30 | 9 20 29 | 3bitr4g | |
31 | 30 | ralbidva | |
32 | 1 31 | bitr4d | |