Metamath Proof Explorer


Theorem istrkg2d

Description: Property of fulfilling dimension 2 axiom. (Contributed by Thierry Arnoux, 29-May-2019) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Hypotheses istrkg2d.p P=BaseG
istrkg2d.d -˙=distG
istrkg2d.i I=ItvG
Assertion istrkg2d G𝒢Tarski2DGVxPyPzP¬zxIyxzIyyxIzxPyPzPuPvPx-˙u=x-˙vy-˙u=y-˙vz-˙u=z-˙vuvzxIyxzIyyxIz

Proof

Step Hyp Ref Expression
1 istrkg2d.p P=BaseG
2 istrkg2d.d -˙=distG
3 istrkg2d.i I=ItvG
4 simp1 p=Pd=-˙i=Ip=P
5 4 eqcomd p=Pd=-˙i=IP=p
6 simp3 p=Pd=-˙i=Ii=I
7 6 eqcomd p=Pd=-˙i=II=i
8 7 oveqd p=Pd=-˙i=IxIy=xiy
9 8 eleq2d p=Pd=-˙i=IzxIyzxiy
10 7 oveqd p=Pd=-˙i=IzIy=ziy
11 10 eleq2d p=Pd=-˙i=IxzIyxziy
12 7 oveqd p=Pd=-˙i=IxIz=xiz
13 12 eleq2d p=Pd=-˙i=IyxIzyxiz
14 9 11 13 3orbi123d p=Pd=-˙i=IzxIyxzIyyxIzzxiyxziyyxiz
15 14 notbid p=Pd=-˙i=I¬zxIyxzIyyxIz¬zxiyxziyyxiz
16 5 15 rexeqbidv p=Pd=-˙i=IzP¬zxIyxzIyyxIzzp¬zxiyxziyyxiz
17 5 16 rexeqbidv p=Pd=-˙i=IyPzP¬zxIyxzIyyxIzypzp¬zxiyxziyyxiz
18 5 17 rexeqbidv p=Pd=-˙i=IxPyPzP¬zxIyxzIyyxIzxpypzp¬zxiyxziyyxiz
19 simp2 p=Pd=-˙i=Id=-˙
20 19 eqcomd p=Pd=-˙i=I-˙=d
21 20 oveqd p=Pd=-˙i=Ix-˙u=xdu
22 20 oveqd p=Pd=-˙i=Ix-˙v=xdv
23 21 22 eqeq12d p=Pd=-˙i=Ix-˙u=x-˙vxdu=xdv
24 20 oveqd p=Pd=-˙i=Iy-˙u=ydu
25 20 oveqd p=Pd=-˙i=Iy-˙v=ydv
26 24 25 eqeq12d p=Pd=-˙i=Iy-˙u=y-˙vydu=ydv
27 20 oveqd p=Pd=-˙i=Iz-˙u=zdu
28 20 oveqd p=Pd=-˙i=Iz-˙v=zdv
29 27 28 eqeq12d p=Pd=-˙i=Iz-˙u=z-˙vzdu=zdv
30 23 26 29 3anbi123d p=Pd=-˙i=Ix-˙u=x-˙vy-˙u=y-˙vz-˙u=z-˙vxdu=xdvydu=ydvzdu=zdv
31 30 anbi1d p=Pd=-˙i=Ix-˙u=x-˙vy-˙u=y-˙vz-˙u=z-˙vuvxdu=xdvydu=ydvzdu=zdvuv
32 31 14 imbi12d p=Pd=-˙i=Ix-˙u=x-˙vy-˙u=y-˙vz-˙u=z-˙vuvzxIyxzIyyxIzxdu=xdvydu=ydvzdu=zdvuvzxiyxziyyxiz
33 5 32 raleqbidv p=Pd=-˙i=IvPx-˙u=x-˙vy-˙u=y-˙vz-˙u=z-˙vuvzxIyxzIyyxIzvpxdu=xdvydu=ydvzdu=zdvuvzxiyxziyyxiz
34 5 33 raleqbidv p=Pd=-˙i=IuPvPx-˙u=x-˙vy-˙u=y-˙vz-˙u=z-˙vuvzxIyxzIyyxIzupvpxdu=xdvydu=ydvzdu=zdvuvzxiyxziyyxiz
35 5 34 raleqbidv p=Pd=-˙i=IzPuPvPx-˙u=x-˙vy-˙u=y-˙vz-˙u=z-˙vuvzxIyxzIyyxIzzpupvpxdu=xdvydu=ydvzdu=zdvuvzxiyxziyyxiz
36 5 35 raleqbidv p=Pd=-˙i=IyPzPuPvPx-˙u=x-˙vy-˙u=y-˙vz-˙u=z-˙vuvzxIyxzIyyxIzypzpupvpxdu=xdvydu=ydvzdu=zdvuvzxiyxziyyxiz
37 5 36 raleqbidv p=Pd=-˙i=IxPyPzPuPvPx-˙u=x-˙vy-˙u=y-˙vz-˙u=z-˙vuvzxIyxzIyyxIzxpypzpupvpxdu=xdvydu=ydvzdu=zdvuvzxiyxziyyxiz
38 18 37 anbi12d p=Pd=-˙i=IxPyPzP¬zxIyxzIyyxIzxPyPzPuPvPx-˙u=x-˙vy-˙u=y-˙vz-˙u=z-˙vuvzxIyxzIyyxIzxpypzp¬zxiyxziyyxizxpypzpupvpxdu=xdvydu=ydvzdu=zdvuvzxiyxziyyxiz
39 1 2 3 38 sbcie3s f=G[˙Basef/p]˙[˙distf/d]˙[˙Itvf/i]˙xpypzp¬zxiyxziyyxizxpypzpupvpxdu=xdvydu=ydvzdu=zdvuvzxiyxziyyxizxPyPzP¬zxIyxzIyyxIzxPyPzPuPvPx-˙u=x-˙vy-˙u=y-˙vz-˙u=z-˙vuvzxIyxzIyyxIz
40 df-trkg2d 𝒢Tarski2D=f|[˙Basef/p]˙[˙distf/d]˙[˙Itvf/i]˙xpypzp¬zxiyxziyyxizxpypzpupvpxdu=xdvydu=ydvzdu=zdvuvzxiyxziyyxiz
41 39 40 elab4g G𝒢Tarski2DGVxPyPzP¬zxIyxzIyyxIzxPyPzPuPvPx-˙u=x-˙vy-˙u=y-˙vz-˙u=z-˙vuvzxIyxzIyyxIz