Description: Property of fulfilling dimension 2 axiom. (Contributed by Thierry Arnoux, 29-May-2019) (New usage is discouraged.) (Proof modification is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | istrkg2d.p | |
|
istrkg2d.d | |
||
istrkg2d.i | |
||
Assertion | istrkg2d | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | istrkg2d.p | |
|
2 | istrkg2d.d | |
|
3 | istrkg2d.i | |
|
4 | simp1 | |
|
5 | 4 | eqcomd | |
6 | simp3 | |
|
7 | 6 | eqcomd | |
8 | 7 | oveqd | |
9 | 8 | eleq2d | |
10 | 7 | oveqd | |
11 | 10 | eleq2d | |
12 | 7 | oveqd | |
13 | 12 | eleq2d | |
14 | 9 11 13 | 3orbi123d | |
15 | 14 | notbid | |
16 | 5 15 | rexeqbidv | |
17 | 5 16 | rexeqbidv | |
18 | 5 17 | rexeqbidv | |
19 | simp2 | |
|
20 | 19 | eqcomd | |
21 | 20 | oveqd | |
22 | 20 | oveqd | |
23 | 21 22 | eqeq12d | |
24 | 20 | oveqd | |
25 | 20 | oveqd | |
26 | 24 25 | eqeq12d | |
27 | 20 | oveqd | |
28 | 20 | oveqd | |
29 | 27 28 | eqeq12d | |
30 | 23 26 29 | 3anbi123d | |
31 | 30 | anbi1d | |
32 | 31 14 | imbi12d | |
33 | 5 32 | raleqbidv | |
34 | 5 33 | raleqbidv | |
35 | 5 34 | raleqbidv | |
36 | 5 35 | raleqbidv | |
37 | 5 36 | raleqbidv | |
38 | 18 37 | anbi12d | |
39 | 1 2 3 38 | sbcie3s | |
40 | df-trkg2d | |
|
41 | 39 40 | elab4g | |