Metamath Proof Explorer


Theorem isuvtx

Description: The set of all universal vertices. (Contributed by Alexander van der Vekens, 12-Oct-2017) (Revised by AV, 30-Oct-2020) (Revised by AV, 14-Feb-2022)

Ref Expression
Hypotheses uvtxel.v V=VtxG
isuvtx.e E=EdgG
Assertion isuvtx UnivVtxG=vV|kVveEkve

Proof

Step Hyp Ref Expression
1 uvtxel.v V=VtxG
2 isuvtx.e E=EdgG
3 1 uvtxval UnivVtxG=vV|kVvkGNeighbVtxv
4 1 2 nbgrel kGNeighbVtxvkVvVkveEvke
5 df-3an kVvVkveEvkekVvVkveEvke
6 4 5 bitri kGNeighbVtxvkVvVkveEvke
7 prcom kv=vk
8 7 sseq1i kvevke
9 8 rexbii eEkveeEvke
10 id vVvV
11 eldifi kVvkV
12 10 11 anim12ci vVkVvkVvV
13 eldifsni kVvkv
14 13 adantl vVkVvkv
15 12 14 jca vVkVvkVvVkv
16 15 biantrurd vVkVveEvkekVvVkveEvke
17 9 16 bitr2id vVkVvkVvVkveEvkeeEkve
18 6 17 bitrid vVkVvkGNeighbVtxveEkve
19 18 ralbidva vVkVvkGNeighbVtxvkVveEkve
20 19 rabbiia vV|kVvkGNeighbVtxv=vV|kVveEkve
21 3 20 eqtri UnivVtxG=vV|kVveEkve