Metamath Proof Explorer


Theorem iswwlks

Description: A word over the set of vertices representing a walk (in an undirected graph). (Contributed by Alexander van der Vekens, 15-Jul-2018) (Revised by AV, 8-Apr-2021)

Ref Expression
Hypotheses wwlks.v V=VtxG
wwlks.e E=EdgG
Assertion iswwlks WWWalksGWWWordVi0..^W1WiWi+1E

Proof

Step Hyp Ref Expression
1 wwlks.v V=VtxG
2 wwlks.e E=EdgG
3 neeq1 w=WwW
4 fveq2 w=Ww=W
5 4 oveq1d w=Ww1=W1
6 5 oveq2d w=W0..^w1=0..^W1
7 fveq1 w=Wwi=Wi
8 fveq1 w=Wwi+1=Wi+1
9 7 8 preq12d w=Wwiwi+1=WiWi+1
10 9 eleq1d w=Wwiwi+1EWiWi+1E
11 6 10 raleqbidv w=Wi0..^w1wiwi+1Ei0..^W1WiWi+1E
12 3 11 anbi12d w=Wwi0..^w1wiwi+1EWi0..^W1WiWi+1E
13 12 elrab WwWordV|wi0..^w1wiwi+1EWWordVWi0..^W1WiWi+1E
14 1 2 wwlks WWalksG=wWordV|wi0..^w1wiwi+1E
15 14 eleq2i WWWalksGWwWordV|wi0..^w1wiwi+1E
16 3anan12 WWWordVi0..^W1WiWi+1EWWordVWi0..^W1WiWi+1E
17 13 15 16 3bitr4i WWWalksGWWWordVi0..^W1WiWi+1E