Metamath Proof Explorer


Theorem iswwlks

Description: A word over the set of vertices representing a walk (in an undirected graph). (Contributed by Alexander van der Vekens, 15-Jul-2018) (Revised by AV, 8-Apr-2021)

Ref Expression
Hypotheses wwlks.v V = Vtx G
wwlks.e E = Edg G
Assertion iswwlks W WWalks G W W Word V i 0 ..^ W 1 W i W i + 1 E

Proof

Step Hyp Ref Expression
1 wwlks.v V = Vtx G
2 wwlks.e E = Edg G
3 neeq1 w = W w W
4 fveq2 w = W w = W
5 4 oveq1d w = W w 1 = W 1
6 5 oveq2d w = W 0 ..^ w 1 = 0 ..^ W 1
7 fveq1 w = W w i = W i
8 fveq1 w = W w i + 1 = W i + 1
9 7 8 preq12d w = W w i w i + 1 = W i W i + 1
10 9 eleq1d w = W w i w i + 1 E W i W i + 1 E
11 6 10 raleqbidv w = W i 0 ..^ w 1 w i w i + 1 E i 0 ..^ W 1 W i W i + 1 E
12 3 11 anbi12d w = W w i 0 ..^ w 1 w i w i + 1 E W i 0 ..^ W 1 W i W i + 1 E
13 12 elrab W w Word V | w i 0 ..^ w 1 w i w i + 1 E W Word V W i 0 ..^ W 1 W i W i + 1 E
14 1 2 wwlks WWalks G = w Word V | w i 0 ..^ w 1 w i w i + 1 E
15 14 eleq2i W WWalks G W w Word V | w i 0 ..^ w 1 w i w i + 1 E
16 3anan12 W W Word V i 0 ..^ W 1 W i W i + 1 E W Word V W i 0 ..^ W 1 W i W i + 1 E
17 13 15 16 3bitr4i W WWalks G W W Word V i 0 ..^ W 1 W i W i + 1 E