Metamath Proof Explorer


Theorem iswwlksnx

Description: Properties of a word to represent a walk of a fixed length, definition of WWalks expanded. (Contributed by AV, 28-Apr-2021)

Ref Expression
Hypotheses iswwlksnx.v V=VtxG
iswwlksnx.e E=EdgG
Assertion iswwlksnx N0WNWWalksNGWWordVi0..^W1WiWi+1EW=N+1

Proof

Step Hyp Ref Expression
1 iswwlksnx.v V=VtxG
2 iswwlksnx.e E=EdgG
3 iswwlksn N0WNWWalksNGWWWalksGW=N+1
4 1 2 iswwlks WWWalksGWWWordVi0..^W1WiWi+1E
5 df-3an WWWordVi0..^W1WiWi+1EWWWordVi0..^W1WiWi+1E
6 nn0p1gt0 N00<N+1
7 6 gt0ne0d N0N+10
8 7 adantr N0W=N+1N+10
9 neeq1 W=N+1W0N+10
10 9 adantl N0W=N+1W0N+10
11 8 10 mpbird N0W=N+1W0
12 hasheq0 WWordVW=0W=
13 12 necon3bid WWordVW0W
14 11 13 syl5ibcom N0W=N+1WWordVW
15 14 pm4.71rd N0W=N+1WWordVWWWordV
16 15 bicomd N0W=N+1WWWordVWWordV
17 16 anbi1d N0W=N+1WWWordVi0..^W1WiWi+1EWWordVi0..^W1WiWi+1E
18 5 17 bitrid N0W=N+1WWWordVi0..^W1WiWi+1EWWordVi0..^W1WiWi+1E
19 4 18 bitrid N0W=N+1WWWalksGWWordVi0..^W1WiWi+1E
20 19 ex N0W=N+1WWWalksGWWordVi0..^W1WiWi+1E
21 20 pm5.32rd N0WWWalksGW=N+1WWordVi0..^W1WiWi+1EW=N+1
22 df-3an WWordVi0..^W1WiWi+1EW=N+1WWordVi0..^W1WiWi+1EW=N+1
23 21 22 bitr4di N0WWWalksGW=N+1WWordVi0..^W1WiWi+1EW=N+1
24 3 23 bitrd N0WNWWalksNGWWordVi0..^W1WiWi+1EW=N+1