Metamath Proof Explorer


Theorem itg1cl

Description: Closure of the integral on simple functions. (Contributed by Mario Carneiro, 26-Jun-2014)

Ref Expression
Assertion itg1cl Fdom11F

Proof

Step Hyp Ref Expression
1 itg1val Fdom11F=xranF0xvolF-1x
2 i1frn Fdom1ranFFin
3 difss ranF0ranF
4 ssfi ranFFinranF0ranFranF0Fin
5 2 3 4 sylancl Fdom1ranF0Fin
6 i1ff Fdom1F:
7 6 frnd Fdom1ranF
8 7 ssdifssd Fdom1ranF0
9 8 sselda Fdom1xranF0x
10 i1fima2sn Fdom1xranF0volF-1x
11 9 10 remulcld Fdom1xranF0xvolF-1x
12 5 11 fsumrecl Fdom1xranF0xvolF-1x
13 1 12 eqeltrd Fdom11F