Metamath Proof Explorer


Theorem itg2lr

Description: Sufficient condition for elementhood in the set L . (Contributed by Mario Carneiro, 28-Jun-2014)

Ref Expression
Hypothesis itg2val.1 L=x|gdom1gfFx=1g
Assertion itg2lr Gdom1GfF1GL

Proof

Step Hyp Ref Expression
1 itg2val.1 L=x|gdom1gfFx=1g
2 eqid 1G=1G
3 breq1 g=GgfFGfF
4 fveq2 g=G1g=1G
5 4 eqeq2d g=G1G=1g1G=1G
6 3 5 anbi12d g=GgfF1G=1gGfF1G=1G
7 6 rspcev Gdom1GfF1G=1Ggdom1gfF1G=1g
8 2 7 mpanr2 Gdom1GfFgdom1gfF1G=1g
9 1 itg2l 1GLgdom1gfF1G=1g
10 8 9 sylibr Gdom1GfF1GL