Metamath Proof Explorer


Theorem itgvallem3

Description: Lemma for itgposval and itgreval . (Contributed by Mario Carneiro, 7-Jul-2014) (Revised by Mario Carneiro, 23-Aug-2014)

Ref Expression
Hypothesis itgvallem3.1 φxAB=0
Assertion itgvallem3 φ2xifxA0BB0=0

Proof

Step Hyp Ref Expression
1 itgvallem3.1 φxAB=0
2 1 adantrr φxA0BB=0
3 2 ifeq1da φifxA0BB0=ifxA0B00
4 ifid ifxA0B00=0
5 3 4 eqtrdi φifxA0BB0=0
6 5 mpteq2dv φxifxA0BB0=x0
7 fconstmpt ×0=x0
8 6 7 eqtr4di φxifxA0BB0=×0
9 8 fveq2d φ2xifxA0BB0=2×0
10 itg20 2×0=0
11 9 10 eqtrdi φ2xifxA0BB0=0