Description: The intersection of a set is the complement of the union of the complements. TODO: shorten using iundifdifd . (Contributed by Thierry Arnoux, 4-Sep-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | iundifdif.o | |
|
iundifdif.2 | |
||
Assertion | iundifdif | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iundifdif.o | |
|
2 | iundifdif.2 | |
|
3 | iundif2 | |
|
4 | intiin | |
|
5 | 4 | difeq2i | |
6 | 3 5 | eqtr4i | |
7 | 6 | difeq2i | |
8 | 2 | jctl | |
9 | intssuni2 | |
|
10 | unipw | |
|
11 | 10 | sseq2i | |
12 | 11 | biimpi | |
13 | 8 9 12 | 3syl | |
14 | dfss4 | |
|
15 | 13 14 | sylib | |
16 | 7 15 | eqtr2id | |