Metamath Proof Explorer


Theorem iundifdif

Description: The intersection of a set is the complement of the union of the complements. TODO: shorten using iundifdifd . (Contributed by Thierry Arnoux, 4-Sep-2016)

Ref Expression
Hypotheses iundifdif.o OV
iundifdif.2 A𝒫O
Assertion iundifdif AA=OxAOx

Proof

Step Hyp Ref Expression
1 iundifdif.o OV
2 iundifdif.2 A𝒫O
3 iundif2 xAOx=OxAx
4 intiin A=xAx
5 4 difeq2i OA=OxAx
6 3 5 eqtr4i xAOx=OA
7 6 difeq2i OxAOx=OOA
8 2 jctl AA𝒫OA
9 intssuni2 A𝒫OAA𝒫O
10 unipw 𝒫O=O
11 10 sseq2i A𝒫OAO
12 11 biimpi A𝒫OAO
13 8 9 12 3syl AAO
14 dfss4 AOOOA=A
15 13 14 sylib AOOA=A
16 7 15 eqtr2id AA=OxAOx