Metamath Proof Explorer


Theorem iunord

Description: The indexed union of a collection of ordinal numbers B ( x ) is ordinal. This proof is based on the proof of ssorduni , but does not use it directly, since ssorduni does not work when B is a proper class. (Contributed by Emmett Weisz, 3-Nov-2019)

Ref Expression
Assertion iunord xAOrdBOrdxAB

Proof

Step Hyp Ref Expression
1 ordtr OrdBTrB
2 1 ralimi xAOrdBxATrB
3 triun xATrBTrxAB
4 2 3 syl xAOrdBTrxAB
5 eliun yxABxAyB
6 nfra1 xxAOrdB
7 nfv xyOn
8 rsp xAOrdBxAOrdB
9 ordelon OrdByByOn
10 9 ex OrdByByOn
11 8 10 syl6 xAOrdBxAyByOn
12 6 7 11 rexlimd xAOrdBxAyByOn
13 5 12 biimtrid xAOrdByxAByOn
14 13 ssrdv xAOrdBxABOn
15 ordon OrdOn
16 trssord TrxABxABOnOrdOnOrdxAB
17 16 3exp TrxABxABOnOrdOnOrdxAB
18 15 17 mpii TrxABxABOnOrdxAB
19 4 14 18 sylc xAOrdBOrdxAB