Metamath Proof Explorer


Theorem ixxss1

Description: Subset relationship for intervals of extended reals. (Contributed by Mario Carneiro, 3-Nov-2013) (Revised by Mario Carneiro, 28-Apr-2015)

Ref Expression
Hypotheses ixx.1 O = x * , y * z * | x R z z S y
ixxss1.2 P = x * , y * z * | x T z z S y
ixxss1.3 A * B * w * A W B B T w A R w
Assertion ixxss1 A * A W B B P C A O C

Proof

Step Hyp Ref Expression
1 ixx.1 O = x * , y * z * | x R z z S y
2 ixxss1.2 P = x * , y * z * | x T z z S y
3 ixxss1.3 A * B * w * A W B B T w A R w
4 2 elixx3g w B P C B * C * w * B T w w S C
5 4 simplbi w B P C B * C * w *
6 5 adantl A * A W B w B P C B * C * w *
7 6 simp3d A * A W B w B P C w *
8 simplr A * A W B w B P C A W B
9 4 simprbi w B P C B T w w S C
10 9 adantl A * A W B w B P C B T w w S C
11 10 simpld A * A W B w B P C B T w
12 simpll A * A W B w B P C A *
13 6 simp1d A * A W B w B P C B *
14 12 13 7 3 syl3anc A * A W B w B P C A W B B T w A R w
15 8 11 14 mp2and A * A W B w B P C A R w
16 10 simprd A * A W B w B P C w S C
17 6 simp2d A * A W B w B P C C *
18 1 elixx1 A * C * w A O C w * A R w w S C
19 12 17 18 syl2anc A * A W B w B P C w A O C w * A R w w S C
20 7 15 16 19 mpbir3and A * A W B w B P C w A O C
21 20 ex A * A W B w B P C w A O C
22 21 ssrdv A * A W B B P C A O C