Metamath Proof Explorer


Theorem jm2.27b

Description: Lemma for jm2.27 . Expand existential quantifiers for reverse direction. (Contributed by Stefan O'Rear, 4-Oct-2014)

Ref Expression
Hypotheses jm2.27a1 φ A 2
jm2.27a2 φ B
jm2.27a3 φ C
jm2.27a4 φ D 0
jm2.27a5 φ E 0
jm2.27a6 φ F 0
jm2.27a7 φ G 0
jm2.27a8 φ H 0
jm2.27a9 φ I 0
jm2.27a10 φ J 0
jm2.27a11 φ D 2 A 2 1 C 2 = 1
jm2.27a12 φ F 2 A 2 1 E 2 = 1
jm2.27a13 φ G 2
jm2.27a14 φ I 2 G 2 1 H 2 = 1
jm2.27a15 φ E = J + 1 2 C 2
jm2.27a16 φ F G A
jm2.27a17 φ 2 C G 1
jm2.27a18 φ F H C
jm2.27a19 φ 2 C H B
jm2.27a20 φ B C
Assertion jm2.27b φ C = A Y rm B

Proof

Step Hyp Ref Expression
1 jm2.27a1 φ A 2
2 jm2.27a2 φ B
3 jm2.27a3 φ C
4 jm2.27a4 φ D 0
5 jm2.27a5 φ E 0
6 jm2.27a6 φ F 0
7 jm2.27a7 φ G 0
8 jm2.27a8 φ H 0
9 jm2.27a9 φ I 0
10 jm2.27a10 φ J 0
11 jm2.27a11 φ D 2 A 2 1 C 2 = 1
12 jm2.27a12 φ F 2 A 2 1 E 2 = 1
13 jm2.27a13 φ G 2
14 jm2.27a14 φ I 2 G 2 1 H 2 = 1
15 jm2.27a15 φ E = J + 1 2 C 2
16 jm2.27a16 φ F G A
17 jm2.27a17 φ 2 C G 1
18 jm2.27a18 φ F H C
19 jm2.27a19 φ 2 C H B
20 jm2.27a20 φ B C
21 3 nnzd φ C
22 rmxycomplete A 2 D 0 C D 2 A 2 1 C 2 = 1 p D = A X rm p C = A Y rm p
23 1 4 21 22 syl3anc φ D 2 A 2 1 C 2 = 1 p D = A X rm p C = A Y rm p
24 11 23 mpbid φ p D = A X rm p C = A Y rm p
25 12 adantr φ p D = A X rm p C = A Y rm p F 2 A 2 1 E 2 = 1
26 1 adantr φ p D = A X rm p C = A Y rm p A 2
27 6 adantr φ p D = A X rm p C = A Y rm p F 0
28 5 nn0zd φ E
29 28 adantr φ p D = A X rm p C = A Y rm p E
30 rmxycomplete A 2 F 0 E F 2 A 2 1 E 2 = 1 q F = A X rm q E = A Y rm q
31 26 27 29 30 syl3anc φ p D = A X rm p C = A Y rm p F 2 A 2 1 E 2 = 1 q F = A X rm q E = A Y rm q
32 25 31 mpbid φ p D = A X rm p C = A Y rm p q F = A X rm q E = A Y rm q
33 14 ad2antrr φ p D = A X rm p C = A Y rm p q F = A X rm q E = A Y rm q I 2 G 2 1 H 2 = 1
34 13 ad2antrr φ p D = A X rm p C = A Y rm p q F = A X rm q E = A Y rm q G 2
35 9 ad2antrr φ p D = A X rm p C = A Y rm p q F = A X rm q E = A Y rm q I 0
36 8 nn0zd φ H
37 36 ad2antrr φ p D = A X rm p C = A Y rm p q F = A X rm q E = A Y rm q H
38 rmxycomplete G 2 I 0 H I 2 G 2 1 H 2 = 1 r I = G X rm r H = G Y rm r
39 34 35 37 38 syl3anc φ p D = A X rm p C = A Y rm p q F = A X rm q E = A Y rm q I 2 G 2 1 H 2 = 1 r I = G X rm r H = G Y rm r
40 33 39 mpbid φ p D = A X rm p C = A Y rm p q F = A X rm q E = A Y rm q r I = G X rm r H = G Y rm r
41 1 ad3antrrr φ p D = A X rm p C = A Y rm p q F = A X rm q E = A Y rm q r I = G X rm r H = G Y rm r A 2
42 2 ad3antrrr φ p D = A X rm p C = A Y rm p q F = A X rm q E = A Y rm q r I = G X rm r H = G Y rm r B
43 3 ad3antrrr φ p D = A X rm p C = A Y rm p q F = A X rm q E = A Y rm q r I = G X rm r H = G Y rm r C
44 4 ad3antrrr φ p D = A X rm p C = A Y rm p q F = A X rm q E = A Y rm q r I = G X rm r H = G Y rm r D 0
45 5 ad3antrrr φ p D = A X rm p C = A Y rm p q F = A X rm q E = A Y rm q r I = G X rm r H = G Y rm r E 0
46 6 ad3antrrr φ p D = A X rm p C = A Y rm p q F = A X rm q E = A Y rm q r I = G X rm r H = G Y rm r F 0
47 7 ad3antrrr φ p D = A X rm p C = A Y rm p q F = A X rm q E = A Y rm q r I = G X rm r H = G Y rm r G 0
48 8 ad3antrrr φ p D = A X rm p C = A Y rm p q F = A X rm q E = A Y rm q r I = G X rm r H = G Y rm r H 0
49 9 ad3antrrr φ p D = A X rm p C = A Y rm p q F = A X rm q E = A Y rm q r I = G X rm r H = G Y rm r I 0
50 10 ad3antrrr φ p D = A X rm p C = A Y rm p q F = A X rm q E = A Y rm q r I = G X rm r H = G Y rm r J 0
51 11 ad3antrrr φ p D = A X rm p C = A Y rm p q F = A X rm q E = A Y rm q r I = G X rm r H = G Y rm r D 2 A 2 1 C 2 = 1
52 12 ad3antrrr φ p D = A X rm p C = A Y rm p q F = A X rm q E = A Y rm q r I = G X rm r H = G Y rm r F 2 A 2 1 E 2 = 1
53 13 ad3antrrr φ p D = A X rm p C = A Y rm p q F = A X rm q E = A Y rm q r I = G X rm r H = G Y rm r G 2
54 14 ad3antrrr φ p D = A X rm p C = A Y rm p q F = A X rm q E = A Y rm q r I = G X rm r H = G Y rm r I 2 G 2 1 H 2 = 1
55 15 ad3antrrr φ p D = A X rm p C = A Y rm p q F = A X rm q E = A Y rm q r I = G X rm r H = G Y rm r E = J + 1 2 C 2
56 16 ad3antrrr φ p D = A X rm p C = A Y rm p q F = A X rm q E = A Y rm q r I = G X rm r H = G Y rm r F G A
57 17 ad3antrrr φ p D = A X rm p C = A Y rm p q F = A X rm q E = A Y rm q r I = G X rm r H = G Y rm r 2 C G 1
58 18 ad3antrrr φ p D = A X rm p C = A Y rm p q F = A X rm q E = A Y rm q r I = G X rm r H = G Y rm r F H C
59 19 ad3antrrr φ p D = A X rm p C = A Y rm p q F = A X rm q E = A Y rm q r I = G X rm r H = G Y rm r 2 C H B
60 20 ad3antrrr φ p D = A X rm p C = A Y rm p q F = A X rm q E = A Y rm q r I = G X rm r H = G Y rm r B C
61 simprl φ p D = A X rm p C = A Y rm p p
62 61 ad2antrr φ p D = A X rm p C = A Y rm p q F = A X rm q E = A Y rm q r I = G X rm r H = G Y rm r p
63 simprrl φ p D = A X rm p C = A Y rm p D = A X rm p
64 63 ad2antrr φ p D = A X rm p C = A Y rm p q F = A X rm q E = A Y rm q r I = G X rm r H = G Y rm r D = A X rm p
65 simprrr φ p D = A X rm p C = A Y rm p C = A Y rm p
66 65 ad2antrr φ p D = A X rm p C = A Y rm p q F = A X rm q E = A Y rm q r I = G X rm r H = G Y rm r C = A Y rm p
67 simplrl φ p D = A X rm p C = A Y rm p q F = A X rm q E = A Y rm q r I = G X rm r H = G Y rm r q
68 simprl q F = A X rm q E = A Y rm q F = A X rm q
69 68 ad2antlr φ p D = A X rm p C = A Y rm p q F = A X rm q E = A Y rm q r I = G X rm r H = G Y rm r F = A X rm q
70 simprr q F = A X rm q E = A Y rm q E = A Y rm q
71 70 ad2antlr φ p D = A X rm p C = A Y rm p q F = A X rm q E = A Y rm q r I = G X rm r H = G Y rm r E = A Y rm q
72 simprl φ p D = A X rm p C = A Y rm p q F = A X rm q E = A Y rm q r I = G X rm r H = G Y rm r r
73 simprrl φ p D = A X rm p C = A Y rm p q F = A X rm q E = A Y rm q r I = G X rm r H = G Y rm r I = G X rm r
74 simprrr φ p D = A X rm p C = A Y rm p q F = A X rm q E = A Y rm q r I = G X rm r H = G Y rm r H = G Y rm r
75 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 62 64 66 67 69 71 72 73 74 jm2.27a φ p D = A X rm p C = A Y rm p q F = A X rm q E = A Y rm q r I = G X rm r H = G Y rm r C = A Y rm B
76 40 75 rexlimddv φ p D = A X rm p C = A Y rm p q F = A X rm q E = A Y rm q C = A Y rm B
77 32 76 rexlimddv φ p D = A X rm p C = A Y rm p C = A Y rm B
78 24 77 rexlimddv φ C = A Y rm B