| Step |
Hyp |
Ref |
Expression |
| 1 |
|
jm2.27a1 |
|
| 2 |
|
jm2.27a2 |
|
| 3 |
|
jm2.27a3 |
|
| 4 |
|
jm2.27a4 |
|
| 5 |
|
jm2.27a5 |
|
| 6 |
|
jm2.27a6 |
|
| 7 |
|
jm2.27a7 |
|
| 8 |
|
jm2.27a8 |
|
| 9 |
|
jm2.27a9 |
|
| 10 |
|
jm2.27a10 |
|
| 11 |
|
jm2.27a11 |
|
| 12 |
|
jm2.27a12 |
|
| 13 |
|
jm2.27a13 |
|
| 14 |
|
jm2.27a14 |
|
| 15 |
|
jm2.27a15 |
|
| 16 |
|
jm2.27a16 |
|
| 17 |
|
jm2.27a17 |
|
| 18 |
|
jm2.27a18 |
|
| 19 |
|
jm2.27a19 |
|
| 20 |
|
jm2.27a20 |
|
| 21 |
3
|
nnzd |
|
| 22 |
|
rmxycomplete |
|
| 23 |
1 4 21 22
|
syl3anc |
|
| 24 |
11 23
|
mpbid |
|
| 25 |
12
|
adantr |
|
| 26 |
1
|
adantr |
|
| 27 |
6
|
adantr |
|
| 28 |
5
|
nn0zd |
|
| 29 |
28
|
adantr |
|
| 30 |
|
rmxycomplete |
|
| 31 |
26 27 29 30
|
syl3anc |
|
| 32 |
25 31
|
mpbid |
|
| 33 |
14
|
ad2antrr |
|
| 34 |
13
|
ad2antrr |
|
| 35 |
9
|
ad2antrr |
|
| 36 |
8
|
nn0zd |
|
| 37 |
36
|
ad2antrr |
|
| 38 |
|
rmxycomplete |
|
| 39 |
34 35 37 38
|
syl3anc |
|
| 40 |
33 39
|
mpbid |
|
| 41 |
1
|
ad3antrrr |
|
| 42 |
2
|
ad3antrrr |
|
| 43 |
3
|
ad3antrrr |
|
| 44 |
4
|
ad3antrrr |
|
| 45 |
5
|
ad3antrrr |
|
| 46 |
6
|
ad3antrrr |
|
| 47 |
7
|
ad3antrrr |
|
| 48 |
8
|
ad3antrrr |
|
| 49 |
9
|
ad3antrrr |
|
| 50 |
10
|
ad3antrrr |
|
| 51 |
11
|
ad3antrrr |
|
| 52 |
12
|
ad3antrrr |
|
| 53 |
13
|
ad3antrrr |
|
| 54 |
14
|
ad3antrrr |
|
| 55 |
15
|
ad3antrrr |
|
| 56 |
16
|
ad3antrrr |
|
| 57 |
17
|
ad3antrrr |
|
| 58 |
18
|
ad3antrrr |
|
| 59 |
19
|
ad3antrrr |
|
| 60 |
20
|
ad3antrrr |
|
| 61 |
|
simprl |
|
| 62 |
61
|
ad2antrr |
|
| 63 |
|
simprrl |
|
| 64 |
63
|
ad2antrr |
|
| 65 |
|
simprrr |
|
| 66 |
65
|
ad2antrr |
|
| 67 |
|
simplrl |
|
| 68 |
|
simprl |
|
| 69 |
68
|
ad2antlr |
|
| 70 |
|
simprr |
|
| 71 |
70
|
ad2antlr |
|
| 72 |
|
simprl |
|
| 73 |
|
simprrl |
|
| 74 |
|
simprrr |
|
| 75 |
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 62 64 66 67 69 71 72 73 74
|
jm2.27a |
|
| 76 |
40 75
|
rexlimddv |
|
| 77 |
32 76
|
rexlimddv |
|
| 78 |
24 77
|
rexlimddv |
|