Step |
Hyp |
Ref |
Expression |
1 |
|
jm2.27a1 |
|
2 |
|
jm2.27a2 |
|
3 |
|
jm2.27a3 |
|
4 |
|
jm2.27a4 |
|
5 |
|
jm2.27a5 |
|
6 |
|
jm2.27a6 |
|
7 |
|
jm2.27a7 |
|
8 |
|
jm2.27a8 |
|
9 |
|
jm2.27a9 |
|
10 |
|
jm2.27a10 |
|
11 |
|
jm2.27a11 |
|
12 |
|
jm2.27a12 |
|
13 |
|
jm2.27a13 |
|
14 |
|
jm2.27a14 |
|
15 |
|
jm2.27a15 |
|
16 |
|
jm2.27a16 |
|
17 |
|
jm2.27a17 |
|
18 |
|
jm2.27a18 |
|
19 |
|
jm2.27a19 |
|
20 |
|
jm2.27a20 |
|
21 |
3
|
nnzd |
|
22 |
|
rmxycomplete |
|
23 |
1 4 21 22
|
syl3anc |
|
24 |
11 23
|
mpbid |
|
25 |
12
|
adantr |
|
26 |
1
|
adantr |
|
27 |
6
|
adantr |
|
28 |
5
|
nn0zd |
|
29 |
28
|
adantr |
|
30 |
|
rmxycomplete |
|
31 |
26 27 29 30
|
syl3anc |
|
32 |
25 31
|
mpbid |
|
33 |
14
|
ad2antrr |
|
34 |
13
|
ad2antrr |
|
35 |
9
|
ad2antrr |
|
36 |
8
|
nn0zd |
|
37 |
36
|
ad2antrr |
|
38 |
|
rmxycomplete |
|
39 |
34 35 37 38
|
syl3anc |
|
40 |
33 39
|
mpbid |
|
41 |
1
|
ad3antrrr |
|
42 |
2
|
ad3antrrr |
|
43 |
3
|
ad3antrrr |
|
44 |
4
|
ad3antrrr |
|
45 |
5
|
ad3antrrr |
|
46 |
6
|
ad3antrrr |
|
47 |
7
|
ad3antrrr |
|
48 |
8
|
ad3antrrr |
|
49 |
9
|
ad3antrrr |
|
50 |
10
|
ad3antrrr |
|
51 |
11
|
ad3antrrr |
|
52 |
12
|
ad3antrrr |
|
53 |
13
|
ad3antrrr |
|
54 |
14
|
ad3antrrr |
|
55 |
15
|
ad3antrrr |
|
56 |
16
|
ad3antrrr |
|
57 |
17
|
ad3antrrr |
|
58 |
18
|
ad3antrrr |
|
59 |
19
|
ad3antrrr |
|
60 |
20
|
ad3antrrr |
|
61 |
|
simprl |
|
62 |
61
|
ad2antrr |
|
63 |
|
simprrl |
|
64 |
63
|
ad2antrr |
|
65 |
|
simprrr |
|
66 |
65
|
ad2antrr |
|
67 |
|
simplrl |
|
68 |
|
simprl |
|
69 |
68
|
ad2antlr |
|
70 |
|
simprr |
|
71 |
70
|
ad2antlr |
|
72 |
|
simprl |
|
73 |
|
simprrl |
|
74 |
|
simprrr |
|
75 |
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 62 64 66 67 69 71 72 73 74
|
jm2.27a |
|
76 |
40 75
|
rexlimddv |
|
77 |
32 76
|
rexlimddv |
|
78 |
24 77
|
rexlimddv |
|