Metamath Proof Explorer


Theorem jm2.27b

Description: Lemma for jm2.27 . Expand existential quantifiers for reverse direction. (Contributed by Stefan O'Rear, 4-Oct-2014)

Ref Expression
Hypotheses jm2.27a1 ( 𝜑𝐴 ∈ ( ℤ ‘ 2 ) )
jm2.27a2 ( 𝜑𝐵 ∈ ℕ )
jm2.27a3 ( 𝜑𝐶 ∈ ℕ )
jm2.27a4 ( 𝜑𝐷 ∈ ℕ0 )
jm2.27a5 ( 𝜑𝐸 ∈ ℕ0 )
jm2.27a6 ( 𝜑𝐹 ∈ ℕ0 )
jm2.27a7 ( 𝜑𝐺 ∈ ℕ0 )
jm2.27a8 ( 𝜑𝐻 ∈ ℕ0 )
jm2.27a9 ( 𝜑𝐼 ∈ ℕ0 )
jm2.27a10 ( 𝜑𝐽 ∈ ℕ0 )
jm2.27a11 ( 𝜑 → ( ( 𝐷 ↑ 2 ) − ( ( ( 𝐴 ↑ 2 ) − 1 ) · ( 𝐶 ↑ 2 ) ) ) = 1 )
jm2.27a12 ( 𝜑 → ( ( 𝐹 ↑ 2 ) − ( ( ( 𝐴 ↑ 2 ) − 1 ) · ( 𝐸 ↑ 2 ) ) ) = 1 )
jm2.27a13 ( 𝜑𝐺 ∈ ( ℤ ‘ 2 ) )
jm2.27a14 ( 𝜑 → ( ( 𝐼 ↑ 2 ) − ( ( ( 𝐺 ↑ 2 ) − 1 ) · ( 𝐻 ↑ 2 ) ) ) = 1 )
jm2.27a15 ( 𝜑𝐸 = ( ( 𝐽 + 1 ) · ( 2 · ( 𝐶 ↑ 2 ) ) ) )
jm2.27a16 ( 𝜑𝐹 ∥ ( 𝐺𝐴 ) )
jm2.27a17 ( 𝜑 → ( 2 · 𝐶 ) ∥ ( 𝐺 − 1 ) )
jm2.27a18 ( 𝜑𝐹 ∥ ( 𝐻𝐶 ) )
jm2.27a19 ( 𝜑 → ( 2 · 𝐶 ) ∥ ( 𝐻𝐵 ) )
jm2.27a20 ( 𝜑𝐵𝐶 )
Assertion jm2.27b ( 𝜑𝐶 = ( 𝐴 Yrm 𝐵 ) )

Proof

Step Hyp Ref Expression
1 jm2.27a1 ( 𝜑𝐴 ∈ ( ℤ ‘ 2 ) )
2 jm2.27a2 ( 𝜑𝐵 ∈ ℕ )
3 jm2.27a3 ( 𝜑𝐶 ∈ ℕ )
4 jm2.27a4 ( 𝜑𝐷 ∈ ℕ0 )
5 jm2.27a5 ( 𝜑𝐸 ∈ ℕ0 )
6 jm2.27a6 ( 𝜑𝐹 ∈ ℕ0 )
7 jm2.27a7 ( 𝜑𝐺 ∈ ℕ0 )
8 jm2.27a8 ( 𝜑𝐻 ∈ ℕ0 )
9 jm2.27a9 ( 𝜑𝐼 ∈ ℕ0 )
10 jm2.27a10 ( 𝜑𝐽 ∈ ℕ0 )
11 jm2.27a11 ( 𝜑 → ( ( 𝐷 ↑ 2 ) − ( ( ( 𝐴 ↑ 2 ) − 1 ) · ( 𝐶 ↑ 2 ) ) ) = 1 )
12 jm2.27a12 ( 𝜑 → ( ( 𝐹 ↑ 2 ) − ( ( ( 𝐴 ↑ 2 ) − 1 ) · ( 𝐸 ↑ 2 ) ) ) = 1 )
13 jm2.27a13 ( 𝜑𝐺 ∈ ( ℤ ‘ 2 ) )
14 jm2.27a14 ( 𝜑 → ( ( 𝐼 ↑ 2 ) − ( ( ( 𝐺 ↑ 2 ) − 1 ) · ( 𝐻 ↑ 2 ) ) ) = 1 )
15 jm2.27a15 ( 𝜑𝐸 = ( ( 𝐽 + 1 ) · ( 2 · ( 𝐶 ↑ 2 ) ) ) )
16 jm2.27a16 ( 𝜑𝐹 ∥ ( 𝐺𝐴 ) )
17 jm2.27a17 ( 𝜑 → ( 2 · 𝐶 ) ∥ ( 𝐺 − 1 ) )
18 jm2.27a18 ( 𝜑𝐹 ∥ ( 𝐻𝐶 ) )
19 jm2.27a19 ( 𝜑 → ( 2 · 𝐶 ) ∥ ( 𝐻𝐵 ) )
20 jm2.27a20 ( 𝜑𝐵𝐶 )
21 3 nnzd ( 𝜑𝐶 ∈ ℤ )
22 rmxycomplete ( ( 𝐴 ∈ ( ℤ ‘ 2 ) ∧ 𝐷 ∈ ℕ0𝐶 ∈ ℤ ) → ( ( ( 𝐷 ↑ 2 ) − ( ( ( 𝐴 ↑ 2 ) − 1 ) · ( 𝐶 ↑ 2 ) ) ) = 1 ↔ ∃ 𝑝 ∈ ℤ ( 𝐷 = ( 𝐴 Xrm 𝑝 ) ∧ 𝐶 = ( 𝐴 Yrm 𝑝 ) ) ) )
23 1 4 21 22 syl3anc ( 𝜑 → ( ( ( 𝐷 ↑ 2 ) − ( ( ( 𝐴 ↑ 2 ) − 1 ) · ( 𝐶 ↑ 2 ) ) ) = 1 ↔ ∃ 𝑝 ∈ ℤ ( 𝐷 = ( 𝐴 Xrm 𝑝 ) ∧ 𝐶 = ( 𝐴 Yrm 𝑝 ) ) ) )
24 11 23 mpbid ( 𝜑 → ∃ 𝑝 ∈ ℤ ( 𝐷 = ( 𝐴 Xrm 𝑝 ) ∧ 𝐶 = ( 𝐴 Yrm 𝑝 ) ) )
25 12 adantr ( ( 𝜑 ∧ ( 𝑝 ∈ ℤ ∧ ( 𝐷 = ( 𝐴 Xrm 𝑝 ) ∧ 𝐶 = ( 𝐴 Yrm 𝑝 ) ) ) ) → ( ( 𝐹 ↑ 2 ) − ( ( ( 𝐴 ↑ 2 ) − 1 ) · ( 𝐸 ↑ 2 ) ) ) = 1 )
26 1 adantr ( ( 𝜑 ∧ ( 𝑝 ∈ ℤ ∧ ( 𝐷 = ( 𝐴 Xrm 𝑝 ) ∧ 𝐶 = ( 𝐴 Yrm 𝑝 ) ) ) ) → 𝐴 ∈ ( ℤ ‘ 2 ) )
27 6 adantr ( ( 𝜑 ∧ ( 𝑝 ∈ ℤ ∧ ( 𝐷 = ( 𝐴 Xrm 𝑝 ) ∧ 𝐶 = ( 𝐴 Yrm 𝑝 ) ) ) ) → 𝐹 ∈ ℕ0 )
28 5 nn0zd ( 𝜑𝐸 ∈ ℤ )
29 28 adantr ( ( 𝜑 ∧ ( 𝑝 ∈ ℤ ∧ ( 𝐷 = ( 𝐴 Xrm 𝑝 ) ∧ 𝐶 = ( 𝐴 Yrm 𝑝 ) ) ) ) → 𝐸 ∈ ℤ )
30 rmxycomplete ( ( 𝐴 ∈ ( ℤ ‘ 2 ) ∧ 𝐹 ∈ ℕ0𝐸 ∈ ℤ ) → ( ( ( 𝐹 ↑ 2 ) − ( ( ( 𝐴 ↑ 2 ) − 1 ) · ( 𝐸 ↑ 2 ) ) ) = 1 ↔ ∃ 𝑞 ∈ ℤ ( 𝐹 = ( 𝐴 Xrm 𝑞 ) ∧ 𝐸 = ( 𝐴 Yrm 𝑞 ) ) ) )
31 26 27 29 30 syl3anc ( ( 𝜑 ∧ ( 𝑝 ∈ ℤ ∧ ( 𝐷 = ( 𝐴 Xrm 𝑝 ) ∧ 𝐶 = ( 𝐴 Yrm 𝑝 ) ) ) ) → ( ( ( 𝐹 ↑ 2 ) − ( ( ( 𝐴 ↑ 2 ) − 1 ) · ( 𝐸 ↑ 2 ) ) ) = 1 ↔ ∃ 𝑞 ∈ ℤ ( 𝐹 = ( 𝐴 Xrm 𝑞 ) ∧ 𝐸 = ( 𝐴 Yrm 𝑞 ) ) ) )
32 25 31 mpbid ( ( 𝜑 ∧ ( 𝑝 ∈ ℤ ∧ ( 𝐷 = ( 𝐴 Xrm 𝑝 ) ∧ 𝐶 = ( 𝐴 Yrm 𝑝 ) ) ) ) → ∃ 𝑞 ∈ ℤ ( 𝐹 = ( 𝐴 Xrm 𝑞 ) ∧ 𝐸 = ( 𝐴 Yrm 𝑞 ) ) )
33 14 ad2antrr ( ( ( 𝜑 ∧ ( 𝑝 ∈ ℤ ∧ ( 𝐷 = ( 𝐴 Xrm 𝑝 ) ∧ 𝐶 = ( 𝐴 Yrm 𝑝 ) ) ) ) ∧ ( 𝑞 ∈ ℤ ∧ ( 𝐹 = ( 𝐴 Xrm 𝑞 ) ∧ 𝐸 = ( 𝐴 Yrm 𝑞 ) ) ) ) → ( ( 𝐼 ↑ 2 ) − ( ( ( 𝐺 ↑ 2 ) − 1 ) · ( 𝐻 ↑ 2 ) ) ) = 1 )
34 13 ad2antrr ( ( ( 𝜑 ∧ ( 𝑝 ∈ ℤ ∧ ( 𝐷 = ( 𝐴 Xrm 𝑝 ) ∧ 𝐶 = ( 𝐴 Yrm 𝑝 ) ) ) ) ∧ ( 𝑞 ∈ ℤ ∧ ( 𝐹 = ( 𝐴 Xrm 𝑞 ) ∧ 𝐸 = ( 𝐴 Yrm 𝑞 ) ) ) ) → 𝐺 ∈ ( ℤ ‘ 2 ) )
35 9 ad2antrr ( ( ( 𝜑 ∧ ( 𝑝 ∈ ℤ ∧ ( 𝐷 = ( 𝐴 Xrm 𝑝 ) ∧ 𝐶 = ( 𝐴 Yrm 𝑝 ) ) ) ) ∧ ( 𝑞 ∈ ℤ ∧ ( 𝐹 = ( 𝐴 Xrm 𝑞 ) ∧ 𝐸 = ( 𝐴 Yrm 𝑞 ) ) ) ) → 𝐼 ∈ ℕ0 )
36 8 nn0zd ( 𝜑𝐻 ∈ ℤ )
37 36 ad2antrr ( ( ( 𝜑 ∧ ( 𝑝 ∈ ℤ ∧ ( 𝐷 = ( 𝐴 Xrm 𝑝 ) ∧ 𝐶 = ( 𝐴 Yrm 𝑝 ) ) ) ) ∧ ( 𝑞 ∈ ℤ ∧ ( 𝐹 = ( 𝐴 Xrm 𝑞 ) ∧ 𝐸 = ( 𝐴 Yrm 𝑞 ) ) ) ) → 𝐻 ∈ ℤ )
38 rmxycomplete ( ( 𝐺 ∈ ( ℤ ‘ 2 ) ∧ 𝐼 ∈ ℕ0𝐻 ∈ ℤ ) → ( ( ( 𝐼 ↑ 2 ) − ( ( ( 𝐺 ↑ 2 ) − 1 ) · ( 𝐻 ↑ 2 ) ) ) = 1 ↔ ∃ 𝑟 ∈ ℤ ( 𝐼 = ( 𝐺 Xrm 𝑟 ) ∧ 𝐻 = ( 𝐺 Yrm 𝑟 ) ) ) )
39 34 35 37 38 syl3anc ( ( ( 𝜑 ∧ ( 𝑝 ∈ ℤ ∧ ( 𝐷 = ( 𝐴 Xrm 𝑝 ) ∧ 𝐶 = ( 𝐴 Yrm 𝑝 ) ) ) ) ∧ ( 𝑞 ∈ ℤ ∧ ( 𝐹 = ( 𝐴 Xrm 𝑞 ) ∧ 𝐸 = ( 𝐴 Yrm 𝑞 ) ) ) ) → ( ( ( 𝐼 ↑ 2 ) − ( ( ( 𝐺 ↑ 2 ) − 1 ) · ( 𝐻 ↑ 2 ) ) ) = 1 ↔ ∃ 𝑟 ∈ ℤ ( 𝐼 = ( 𝐺 Xrm 𝑟 ) ∧ 𝐻 = ( 𝐺 Yrm 𝑟 ) ) ) )
40 33 39 mpbid ( ( ( 𝜑 ∧ ( 𝑝 ∈ ℤ ∧ ( 𝐷 = ( 𝐴 Xrm 𝑝 ) ∧ 𝐶 = ( 𝐴 Yrm 𝑝 ) ) ) ) ∧ ( 𝑞 ∈ ℤ ∧ ( 𝐹 = ( 𝐴 Xrm 𝑞 ) ∧ 𝐸 = ( 𝐴 Yrm 𝑞 ) ) ) ) → ∃ 𝑟 ∈ ℤ ( 𝐼 = ( 𝐺 Xrm 𝑟 ) ∧ 𝐻 = ( 𝐺 Yrm 𝑟 ) ) )
41 1 ad3antrrr ( ( ( ( 𝜑 ∧ ( 𝑝 ∈ ℤ ∧ ( 𝐷 = ( 𝐴 Xrm 𝑝 ) ∧ 𝐶 = ( 𝐴 Yrm 𝑝 ) ) ) ) ∧ ( 𝑞 ∈ ℤ ∧ ( 𝐹 = ( 𝐴 Xrm 𝑞 ) ∧ 𝐸 = ( 𝐴 Yrm 𝑞 ) ) ) ) ∧ ( 𝑟 ∈ ℤ ∧ ( 𝐼 = ( 𝐺 Xrm 𝑟 ) ∧ 𝐻 = ( 𝐺 Yrm 𝑟 ) ) ) ) → 𝐴 ∈ ( ℤ ‘ 2 ) )
42 2 ad3antrrr ( ( ( ( 𝜑 ∧ ( 𝑝 ∈ ℤ ∧ ( 𝐷 = ( 𝐴 Xrm 𝑝 ) ∧ 𝐶 = ( 𝐴 Yrm 𝑝 ) ) ) ) ∧ ( 𝑞 ∈ ℤ ∧ ( 𝐹 = ( 𝐴 Xrm 𝑞 ) ∧ 𝐸 = ( 𝐴 Yrm 𝑞 ) ) ) ) ∧ ( 𝑟 ∈ ℤ ∧ ( 𝐼 = ( 𝐺 Xrm 𝑟 ) ∧ 𝐻 = ( 𝐺 Yrm 𝑟 ) ) ) ) → 𝐵 ∈ ℕ )
43 3 ad3antrrr ( ( ( ( 𝜑 ∧ ( 𝑝 ∈ ℤ ∧ ( 𝐷 = ( 𝐴 Xrm 𝑝 ) ∧ 𝐶 = ( 𝐴 Yrm 𝑝 ) ) ) ) ∧ ( 𝑞 ∈ ℤ ∧ ( 𝐹 = ( 𝐴 Xrm 𝑞 ) ∧ 𝐸 = ( 𝐴 Yrm 𝑞 ) ) ) ) ∧ ( 𝑟 ∈ ℤ ∧ ( 𝐼 = ( 𝐺 Xrm 𝑟 ) ∧ 𝐻 = ( 𝐺 Yrm 𝑟 ) ) ) ) → 𝐶 ∈ ℕ )
44 4 ad3antrrr ( ( ( ( 𝜑 ∧ ( 𝑝 ∈ ℤ ∧ ( 𝐷 = ( 𝐴 Xrm 𝑝 ) ∧ 𝐶 = ( 𝐴 Yrm 𝑝 ) ) ) ) ∧ ( 𝑞 ∈ ℤ ∧ ( 𝐹 = ( 𝐴 Xrm 𝑞 ) ∧ 𝐸 = ( 𝐴 Yrm 𝑞 ) ) ) ) ∧ ( 𝑟 ∈ ℤ ∧ ( 𝐼 = ( 𝐺 Xrm 𝑟 ) ∧ 𝐻 = ( 𝐺 Yrm 𝑟 ) ) ) ) → 𝐷 ∈ ℕ0 )
45 5 ad3antrrr ( ( ( ( 𝜑 ∧ ( 𝑝 ∈ ℤ ∧ ( 𝐷 = ( 𝐴 Xrm 𝑝 ) ∧ 𝐶 = ( 𝐴 Yrm 𝑝 ) ) ) ) ∧ ( 𝑞 ∈ ℤ ∧ ( 𝐹 = ( 𝐴 Xrm 𝑞 ) ∧ 𝐸 = ( 𝐴 Yrm 𝑞 ) ) ) ) ∧ ( 𝑟 ∈ ℤ ∧ ( 𝐼 = ( 𝐺 Xrm 𝑟 ) ∧ 𝐻 = ( 𝐺 Yrm 𝑟 ) ) ) ) → 𝐸 ∈ ℕ0 )
46 6 ad3antrrr ( ( ( ( 𝜑 ∧ ( 𝑝 ∈ ℤ ∧ ( 𝐷 = ( 𝐴 Xrm 𝑝 ) ∧ 𝐶 = ( 𝐴 Yrm 𝑝 ) ) ) ) ∧ ( 𝑞 ∈ ℤ ∧ ( 𝐹 = ( 𝐴 Xrm 𝑞 ) ∧ 𝐸 = ( 𝐴 Yrm 𝑞 ) ) ) ) ∧ ( 𝑟 ∈ ℤ ∧ ( 𝐼 = ( 𝐺 Xrm 𝑟 ) ∧ 𝐻 = ( 𝐺 Yrm 𝑟 ) ) ) ) → 𝐹 ∈ ℕ0 )
47 7 ad3antrrr ( ( ( ( 𝜑 ∧ ( 𝑝 ∈ ℤ ∧ ( 𝐷 = ( 𝐴 Xrm 𝑝 ) ∧ 𝐶 = ( 𝐴 Yrm 𝑝 ) ) ) ) ∧ ( 𝑞 ∈ ℤ ∧ ( 𝐹 = ( 𝐴 Xrm 𝑞 ) ∧ 𝐸 = ( 𝐴 Yrm 𝑞 ) ) ) ) ∧ ( 𝑟 ∈ ℤ ∧ ( 𝐼 = ( 𝐺 Xrm 𝑟 ) ∧ 𝐻 = ( 𝐺 Yrm 𝑟 ) ) ) ) → 𝐺 ∈ ℕ0 )
48 8 ad3antrrr ( ( ( ( 𝜑 ∧ ( 𝑝 ∈ ℤ ∧ ( 𝐷 = ( 𝐴 Xrm 𝑝 ) ∧ 𝐶 = ( 𝐴 Yrm 𝑝 ) ) ) ) ∧ ( 𝑞 ∈ ℤ ∧ ( 𝐹 = ( 𝐴 Xrm 𝑞 ) ∧ 𝐸 = ( 𝐴 Yrm 𝑞 ) ) ) ) ∧ ( 𝑟 ∈ ℤ ∧ ( 𝐼 = ( 𝐺 Xrm 𝑟 ) ∧ 𝐻 = ( 𝐺 Yrm 𝑟 ) ) ) ) → 𝐻 ∈ ℕ0 )
49 9 ad3antrrr ( ( ( ( 𝜑 ∧ ( 𝑝 ∈ ℤ ∧ ( 𝐷 = ( 𝐴 Xrm 𝑝 ) ∧ 𝐶 = ( 𝐴 Yrm 𝑝 ) ) ) ) ∧ ( 𝑞 ∈ ℤ ∧ ( 𝐹 = ( 𝐴 Xrm 𝑞 ) ∧ 𝐸 = ( 𝐴 Yrm 𝑞 ) ) ) ) ∧ ( 𝑟 ∈ ℤ ∧ ( 𝐼 = ( 𝐺 Xrm 𝑟 ) ∧ 𝐻 = ( 𝐺 Yrm 𝑟 ) ) ) ) → 𝐼 ∈ ℕ0 )
50 10 ad3antrrr ( ( ( ( 𝜑 ∧ ( 𝑝 ∈ ℤ ∧ ( 𝐷 = ( 𝐴 Xrm 𝑝 ) ∧ 𝐶 = ( 𝐴 Yrm 𝑝 ) ) ) ) ∧ ( 𝑞 ∈ ℤ ∧ ( 𝐹 = ( 𝐴 Xrm 𝑞 ) ∧ 𝐸 = ( 𝐴 Yrm 𝑞 ) ) ) ) ∧ ( 𝑟 ∈ ℤ ∧ ( 𝐼 = ( 𝐺 Xrm 𝑟 ) ∧ 𝐻 = ( 𝐺 Yrm 𝑟 ) ) ) ) → 𝐽 ∈ ℕ0 )
51 11 ad3antrrr ( ( ( ( 𝜑 ∧ ( 𝑝 ∈ ℤ ∧ ( 𝐷 = ( 𝐴 Xrm 𝑝 ) ∧ 𝐶 = ( 𝐴 Yrm 𝑝 ) ) ) ) ∧ ( 𝑞 ∈ ℤ ∧ ( 𝐹 = ( 𝐴 Xrm 𝑞 ) ∧ 𝐸 = ( 𝐴 Yrm 𝑞 ) ) ) ) ∧ ( 𝑟 ∈ ℤ ∧ ( 𝐼 = ( 𝐺 Xrm 𝑟 ) ∧ 𝐻 = ( 𝐺 Yrm 𝑟 ) ) ) ) → ( ( 𝐷 ↑ 2 ) − ( ( ( 𝐴 ↑ 2 ) − 1 ) · ( 𝐶 ↑ 2 ) ) ) = 1 )
52 12 ad3antrrr ( ( ( ( 𝜑 ∧ ( 𝑝 ∈ ℤ ∧ ( 𝐷 = ( 𝐴 Xrm 𝑝 ) ∧ 𝐶 = ( 𝐴 Yrm 𝑝 ) ) ) ) ∧ ( 𝑞 ∈ ℤ ∧ ( 𝐹 = ( 𝐴 Xrm 𝑞 ) ∧ 𝐸 = ( 𝐴 Yrm 𝑞 ) ) ) ) ∧ ( 𝑟 ∈ ℤ ∧ ( 𝐼 = ( 𝐺 Xrm 𝑟 ) ∧ 𝐻 = ( 𝐺 Yrm 𝑟 ) ) ) ) → ( ( 𝐹 ↑ 2 ) − ( ( ( 𝐴 ↑ 2 ) − 1 ) · ( 𝐸 ↑ 2 ) ) ) = 1 )
53 13 ad3antrrr ( ( ( ( 𝜑 ∧ ( 𝑝 ∈ ℤ ∧ ( 𝐷 = ( 𝐴 Xrm 𝑝 ) ∧ 𝐶 = ( 𝐴 Yrm 𝑝 ) ) ) ) ∧ ( 𝑞 ∈ ℤ ∧ ( 𝐹 = ( 𝐴 Xrm 𝑞 ) ∧ 𝐸 = ( 𝐴 Yrm 𝑞 ) ) ) ) ∧ ( 𝑟 ∈ ℤ ∧ ( 𝐼 = ( 𝐺 Xrm 𝑟 ) ∧ 𝐻 = ( 𝐺 Yrm 𝑟 ) ) ) ) → 𝐺 ∈ ( ℤ ‘ 2 ) )
54 14 ad3antrrr ( ( ( ( 𝜑 ∧ ( 𝑝 ∈ ℤ ∧ ( 𝐷 = ( 𝐴 Xrm 𝑝 ) ∧ 𝐶 = ( 𝐴 Yrm 𝑝 ) ) ) ) ∧ ( 𝑞 ∈ ℤ ∧ ( 𝐹 = ( 𝐴 Xrm 𝑞 ) ∧ 𝐸 = ( 𝐴 Yrm 𝑞 ) ) ) ) ∧ ( 𝑟 ∈ ℤ ∧ ( 𝐼 = ( 𝐺 Xrm 𝑟 ) ∧ 𝐻 = ( 𝐺 Yrm 𝑟 ) ) ) ) → ( ( 𝐼 ↑ 2 ) − ( ( ( 𝐺 ↑ 2 ) − 1 ) · ( 𝐻 ↑ 2 ) ) ) = 1 )
55 15 ad3antrrr ( ( ( ( 𝜑 ∧ ( 𝑝 ∈ ℤ ∧ ( 𝐷 = ( 𝐴 Xrm 𝑝 ) ∧ 𝐶 = ( 𝐴 Yrm 𝑝 ) ) ) ) ∧ ( 𝑞 ∈ ℤ ∧ ( 𝐹 = ( 𝐴 Xrm 𝑞 ) ∧ 𝐸 = ( 𝐴 Yrm 𝑞 ) ) ) ) ∧ ( 𝑟 ∈ ℤ ∧ ( 𝐼 = ( 𝐺 Xrm 𝑟 ) ∧ 𝐻 = ( 𝐺 Yrm 𝑟 ) ) ) ) → 𝐸 = ( ( 𝐽 + 1 ) · ( 2 · ( 𝐶 ↑ 2 ) ) ) )
56 16 ad3antrrr ( ( ( ( 𝜑 ∧ ( 𝑝 ∈ ℤ ∧ ( 𝐷 = ( 𝐴 Xrm 𝑝 ) ∧ 𝐶 = ( 𝐴 Yrm 𝑝 ) ) ) ) ∧ ( 𝑞 ∈ ℤ ∧ ( 𝐹 = ( 𝐴 Xrm 𝑞 ) ∧ 𝐸 = ( 𝐴 Yrm 𝑞 ) ) ) ) ∧ ( 𝑟 ∈ ℤ ∧ ( 𝐼 = ( 𝐺 Xrm 𝑟 ) ∧ 𝐻 = ( 𝐺 Yrm 𝑟 ) ) ) ) → 𝐹 ∥ ( 𝐺𝐴 ) )
57 17 ad3antrrr ( ( ( ( 𝜑 ∧ ( 𝑝 ∈ ℤ ∧ ( 𝐷 = ( 𝐴 Xrm 𝑝 ) ∧ 𝐶 = ( 𝐴 Yrm 𝑝 ) ) ) ) ∧ ( 𝑞 ∈ ℤ ∧ ( 𝐹 = ( 𝐴 Xrm 𝑞 ) ∧ 𝐸 = ( 𝐴 Yrm 𝑞 ) ) ) ) ∧ ( 𝑟 ∈ ℤ ∧ ( 𝐼 = ( 𝐺 Xrm 𝑟 ) ∧ 𝐻 = ( 𝐺 Yrm 𝑟 ) ) ) ) → ( 2 · 𝐶 ) ∥ ( 𝐺 − 1 ) )
58 18 ad3antrrr ( ( ( ( 𝜑 ∧ ( 𝑝 ∈ ℤ ∧ ( 𝐷 = ( 𝐴 Xrm 𝑝 ) ∧ 𝐶 = ( 𝐴 Yrm 𝑝 ) ) ) ) ∧ ( 𝑞 ∈ ℤ ∧ ( 𝐹 = ( 𝐴 Xrm 𝑞 ) ∧ 𝐸 = ( 𝐴 Yrm 𝑞 ) ) ) ) ∧ ( 𝑟 ∈ ℤ ∧ ( 𝐼 = ( 𝐺 Xrm 𝑟 ) ∧ 𝐻 = ( 𝐺 Yrm 𝑟 ) ) ) ) → 𝐹 ∥ ( 𝐻𝐶 ) )
59 19 ad3antrrr ( ( ( ( 𝜑 ∧ ( 𝑝 ∈ ℤ ∧ ( 𝐷 = ( 𝐴 Xrm 𝑝 ) ∧ 𝐶 = ( 𝐴 Yrm 𝑝 ) ) ) ) ∧ ( 𝑞 ∈ ℤ ∧ ( 𝐹 = ( 𝐴 Xrm 𝑞 ) ∧ 𝐸 = ( 𝐴 Yrm 𝑞 ) ) ) ) ∧ ( 𝑟 ∈ ℤ ∧ ( 𝐼 = ( 𝐺 Xrm 𝑟 ) ∧ 𝐻 = ( 𝐺 Yrm 𝑟 ) ) ) ) → ( 2 · 𝐶 ) ∥ ( 𝐻𝐵 ) )
60 20 ad3antrrr ( ( ( ( 𝜑 ∧ ( 𝑝 ∈ ℤ ∧ ( 𝐷 = ( 𝐴 Xrm 𝑝 ) ∧ 𝐶 = ( 𝐴 Yrm 𝑝 ) ) ) ) ∧ ( 𝑞 ∈ ℤ ∧ ( 𝐹 = ( 𝐴 Xrm 𝑞 ) ∧ 𝐸 = ( 𝐴 Yrm 𝑞 ) ) ) ) ∧ ( 𝑟 ∈ ℤ ∧ ( 𝐼 = ( 𝐺 Xrm 𝑟 ) ∧ 𝐻 = ( 𝐺 Yrm 𝑟 ) ) ) ) → 𝐵𝐶 )
61 simprl ( ( 𝜑 ∧ ( 𝑝 ∈ ℤ ∧ ( 𝐷 = ( 𝐴 Xrm 𝑝 ) ∧ 𝐶 = ( 𝐴 Yrm 𝑝 ) ) ) ) → 𝑝 ∈ ℤ )
62 61 ad2antrr ( ( ( ( 𝜑 ∧ ( 𝑝 ∈ ℤ ∧ ( 𝐷 = ( 𝐴 Xrm 𝑝 ) ∧ 𝐶 = ( 𝐴 Yrm 𝑝 ) ) ) ) ∧ ( 𝑞 ∈ ℤ ∧ ( 𝐹 = ( 𝐴 Xrm 𝑞 ) ∧ 𝐸 = ( 𝐴 Yrm 𝑞 ) ) ) ) ∧ ( 𝑟 ∈ ℤ ∧ ( 𝐼 = ( 𝐺 Xrm 𝑟 ) ∧ 𝐻 = ( 𝐺 Yrm 𝑟 ) ) ) ) → 𝑝 ∈ ℤ )
63 simprrl ( ( 𝜑 ∧ ( 𝑝 ∈ ℤ ∧ ( 𝐷 = ( 𝐴 Xrm 𝑝 ) ∧ 𝐶 = ( 𝐴 Yrm 𝑝 ) ) ) ) → 𝐷 = ( 𝐴 Xrm 𝑝 ) )
64 63 ad2antrr ( ( ( ( 𝜑 ∧ ( 𝑝 ∈ ℤ ∧ ( 𝐷 = ( 𝐴 Xrm 𝑝 ) ∧ 𝐶 = ( 𝐴 Yrm 𝑝 ) ) ) ) ∧ ( 𝑞 ∈ ℤ ∧ ( 𝐹 = ( 𝐴 Xrm 𝑞 ) ∧ 𝐸 = ( 𝐴 Yrm 𝑞 ) ) ) ) ∧ ( 𝑟 ∈ ℤ ∧ ( 𝐼 = ( 𝐺 Xrm 𝑟 ) ∧ 𝐻 = ( 𝐺 Yrm 𝑟 ) ) ) ) → 𝐷 = ( 𝐴 Xrm 𝑝 ) )
65 simprrr ( ( 𝜑 ∧ ( 𝑝 ∈ ℤ ∧ ( 𝐷 = ( 𝐴 Xrm 𝑝 ) ∧ 𝐶 = ( 𝐴 Yrm 𝑝 ) ) ) ) → 𝐶 = ( 𝐴 Yrm 𝑝 ) )
66 65 ad2antrr ( ( ( ( 𝜑 ∧ ( 𝑝 ∈ ℤ ∧ ( 𝐷 = ( 𝐴 Xrm 𝑝 ) ∧ 𝐶 = ( 𝐴 Yrm 𝑝 ) ) ) ) ∧ ( 𝑞 ∈ ℤ ∧ ( 𝐹 = ( 𝐴 Xrm 𝑞 ) ∧ 𝐸 = ( 𝐴 Yrm 𝑞 ) ) ) ) ∧ ( 𝑟 ∈ ℤ ∧ ( 𝐼 = ( 𝐺 Xrm 𝑟 ) ∧ 𝐻 = ( 𝐺 Yrm 𝑟 ) ) ) ) → 𝐶 = ( 𝐴 Yrm 𝑝 ) )
67 simplrl ( ( ( ( 𝜑 ∧ ( 𝑝 ∈ ℤ ∧ ( 𝐷 = ( 𝐴 Xrm 𝑝 ) ∧ 𝐶 = ( 𝐴 Yrm 𝑝 ) ) ) ) ∧ ( 𝑞 ∈ ℤ ∧ ( 𝐹 = ( 𝐴 Xrm 𝑞 ) ∧ 𝐸 = ( 𝐴 Yrm 𝑞 ) ) ) ) ∧ ( 𝑟 ∈ ℤ ∧ ( 𝐼 = ( 𝐺 Xrm 𝑟 ) ∧ 𝐻 = ( 𝐺 Yrm 𝑟 ) ) ) ) → 𝑞 ∈ ℤ )
68 simprl ( ( 𝑞 ∈ ℤ ∧ ( 𝐹 = ( 𝐴 Xrm 𝑞 ) ∧ 𝐸 = ( 𝐴 Yrm 𝑞 ) ) ) → 𝐹 = ( 𝐴 Xrm 𝑞 ) )
69 68 ad2antlr ( ( ( ( 𝜑 ∧ ( 𝑝 ∈ ℤ ∧ ( 𝐷 = ( 𝐴 Xrm 𝑝 ) ∧ 𝐶 = ( 𝐴 Yrm 𝑝 ) ) ) ) ∧ ( 𝑞 ∈ ℤ ∧ ( 𝐹 = ( 𝐴 Xrm 𝑞 ) ∧ 𝐸 = ( 𝐴 Yrm 𝑞 ) ) ) ) ∧ ( 𝑟 ∈ ℤ ∧ ( 𝐼 = ( 𝐺 Xrm 𝑟 ) ∧ 𝐻 = ( 𝐺 Yrm 𝑟 ) ) ) ) → 𝐹 = ( 𝐴 Xrm 𝑞 ) )
70 simprr ( ( 𝑞 ∈ ℤ ∧ ( 𝐹 = ( 𝐴 Xrm 𝑞 ) ∧ 𝐸 = ( 𝐴 Yrm 𝑞 ) ) ) → 𝐸 = ( 𝐴 Yrm 𝑞 ) )
71 70 ad2antlr ( ( ( ( 𝜑 ∧ ( 𝑝 ∈ ℤ ∧ ( 𝐷 = ( 𝐴 Xrm 𝑝 ) ∧ 𝐶 = ( 𝐴 Yrm 𝑝 ) ) ) ) ∧ ( 𝑞 ∈ ℤ ∧ ( 𝐹 = ( 𝐴 Xrm 𝑞 ) ∧ 𝐸 = ( 𝐴 Yrm 𝑞 ) ) ) ) ∧ ( 𝑟 ∈ ℤ ∧ ( 𝐼 = ( 𝐺 Xrm 𝑟 ) ∧ 𝐻 = ( 𝐺 Yrm 𝑟 ) ) ) ) → 𝐸 = ( 𝐴 Yrm 𝑞 ) )
72 simprl ( ( ( ( 𝜑 ∧ ( 𝑝 ∈ ℤ ∧ ( 𝐷 = ( 𝐴 Xrm 𝑝 ) ∧ 𝐶 = ( 𝐴 Yrm 𝑝 ) ) ) ) ∧ ( 𝑞 ∈ ℤ ∧ ( 𝐹 = ( 𝐴 Xrm 𝑞 ) ∧ 𝐸 = ( 𝐴 Yrm 𝑞 ) ) ) ) ∧ ( 𝑟 ∈ ℤ ∧ ( 𝐼 = ( 𝐺 Xrm 𝑟 ) ∧ 𝐻 = ( 𝐺 Yrm 𝑟 ) ) ) ) → 𝑟 ∈ ℤ )
73 simprrl ( ( ( ( 𝜑 ∧ ( 𝑝 ∈ ℤ ∧ ( 𝐷 = ( 𝐴 Xrm 𝑝 ) ∧ 𝐶 = ( 𝐴 Yrm 𝑝 ) ) ) ) ∧ ( 𝑞 ∈ ℤ ∧ ( 𝐹 = ( 𝐴 Xrm 𝑞 ) ∧ 𝐸 = ( 𝐴 Yrm 𝑞 ) ) ) ) ∧ ( 𝑟 ∈ ℤ ∧ ( 𝐼 = ( 𝐺 Xrm 𝑟 ) ∧ 𝐻 = ( 𝐺 Yrm 𝑟 ) ) ) ) → 𝐼 = ( 𝐺 Xrm 𝑟 ) )
74 simprrr ( ( ( ( 𝜑 ∧ ( 𝑝 ∈ ℤ ∧ ( 𝐷 = ( 𝐴 Xrm 𝑝 ) ∧ 𝐶 = ( 𝐴 Yrm 𝑝 ) ) ) ) ∧ ( 𝑞 ∈ ℤ ∧ ( 𝐹 = ( 𝐴 Xrm 𝑞 ) ∧ 𝐸 = ( 𝐴 Yrm 𝑞 ) ) ) ) ∧ ( 𝑟 ∈ ℤ ∧ ( 𝐼 = ( 𝐺 Xrm 𝑟 ) ∧ 𝐻 = ( 𝐺 Yrm 𝑟 ) ) ) ) → 𝐻 = ( 𝐺 Yrm 𝑟 ) )
75 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 62 64 66 67 69 71 72 73 74 jm2.27a ( ( ( ( 𝜑 ∧ ( 𝑝 ∈ ℤ ∧ ( 𝐷 = ( 𝐴 Xrm 𝑝 ) ∧ 𝐶 = ( 𝐴 Yrm 𝑝 ) ) ) ) ∧ ( 𝑞 ∈ ℤ ∧ ( 𝐹 = ( 𝐴 Xrm 𝑞 ) ∧ 𝐸 = ( 𝐴 Yrm 𝑞 ) ) ) ) ∧ ( 𝑟 ∈ ℤ ∧ ( 𝐼 = ( 𝐺 Xrm 𝑟 ) ∧ 𝐻 = ( 𝐺 Yrm 𝑟 ) ) ) ) → 𝐶 = ( 𝐴 Yrm 𝐵 ) )
76 40 75 rexlimddv ( ( ( 𝜑 ∧ ( 𝑝 ∈ ℤ ∧ ( 𝐷 = ( 𝐴 Xrm 𝑝 ) ∧ 𝐶 = ( 𝐴 Yrm 𝑝 ) ) ) ) ∧ ( 𝑞 ∈ ℤ ∧ ( 𝐹 = ( 𝐴 Xrm 𝑞 ) ∧ 𝐸 = ( 𝐴 Yrm 𝑞 ) ) ) ) → 𝐶 = ( 𝐴 Yrm 𝐵 ) )
77 32 76 rexlimddv ( ( 𝜑 ∧ ( 𝑝 ∈ ℤ ∧ ( 𝐷 = ( 𝐴 Xrm 𝑝 ) ∧ 𝐶 = ( 𝐴 Yrm 𝑝 ) ) ) ) → 𝐶 = ( 𝐴 Yrm 𝐵 ) )
78 24 77 rexlimddv ( 𝜑𝐶 = ( 𝐴 Yrm 𝐵 ) )