Step |
Hyp |
Ref |
Expression |
1 |
|
jm2.27a1 |
⊢ ( 𝜑 → 𝐴 ∈ ( ℤ≥ ‘ 2 ) ) |
2 |
|
jm2.27a2 |
⊢ ( 𝜑 → 𝐵 ∈ ℕ ) |
3 |
|
jm2.27a3 |
⊢ ( 𝜑 → 𝐶 ∈ ℕ ) |
4 |
|
jm2.27a4 |
⊢ ( 𝜑 → 𝐷 ∈ ℕ0 ) |
5 |
|
jm2.27a5 |
⊢ ( 𝜑 → 𝐸 ∈ ℕ0 ) |
6 |
|
jm2.27a6 |
⊢ ( 𝜑 → 𝐹 ∈ ℕ0 ) |
7 |
|
jm2.27a7 |
⊢ ( 𝜑 → 𝐺 ∈ ℕ0 ) |
8 |
|
jm2.27a8 |
⊢ ( 𝜑 → 𝐻 ∈ ℕ0 ) |
9 |
|
jm2.27a9 |
⊢ ( 𝜑 → 𝐼 ∈ ℕ0 ) |
10 |
|
jm2.27a10 |
⊢ ( 𝜑 → 𝐽 ∈ ℕ0 ) |
11 |
|
jm2.27a11 |
⊢ ( 𝜑 → ( ( 𝐷 ↑ 2 ) − ( ( ( 𝐴 ↑ 2 ) − 1 ) · ( 𝐶 ↑ 2 ) ) ) = 1 ) |
12 |
|
jm2.27a12 |
⊢ ( 𝜑 → ( ( 𝐹 ↑ 2 ) − ( ( ( 𝐴 ↑ 2 ) − 1 ) · ( 𝐸 ↑ 2 ) ) ) = 1 ) |
13 |
|
jm2.27a13 |
⊢ ( 𝜑 → 𝐺 ∈ ( ℤ≥ ‘ 2 ) ) |
14 |
|
jm2.27a14 |
⊢ ( 𝜑 → ( ( 𝐼 ↑ 2 ) − ( ( ( 𝐺 ↑ 2 ) − 1 ) · ( 𝐻 ↑ 2 ) ) ) = 1 ) |
15 |
|
jm2.27a15 |
⊢ ( 𝜑 → 𝐸 = ( ( 𝐽 + 1 ) · ( 2 · ( 𝐶 ↑ 2 ) ) ) ) |
16 |
|
jm2.27a16 |
⊢ ( 𝜑 → 𝐹 ∥ ( 𝐺 − 𝐴 ) ) |
17 |
|
jm2.27a17 |
⊢ ( 𝜑 → ( 2 · 𝐶 ) ∥ ( 𝐺 − 1 ) ) |
18 |
|
jm2.27a18 |
⊢ ( 𝜑 → 𝐹 ∥ ( 𝐻 − 𝐶 ) ) |
19 |
|
jm2.27a19 |
⊢ ( 𝜑 → ( 2 · 𝐶 ) ∥ ( 𝐻 − 𝐵 ) ) |
20 |
|
jm2.27a20 |
⊢ ( 𝜑 → 𝐵 ≤ 𝐶 ) |
21 |
|
jm2.27a21 |
⊢ ( 𝜑 → 𝑃 ∈ ℤ ) |
22 |
|
jm2.27a22 |
⊢ ( 𝜑 → 𝐷 = ( 𝐴 Xrm 𝑃 ) ) |
23 |
|
jm2.27a23 |
⊢ ( 𝜑 → 𝐶 = ( 𝐴 Yrm 𝑃 ) ) |
24 |
|
jm2.27a24 |
⊢ ( 𝜑 → 𝑄 ∈ ℤ ) |
25 |
|
jm2.27a25 |
⊢ ( 𝜑 → 𝐹 = ( 𝐴 Xrm 𝑄 ) ) |
26 |
|
jm2.27a26 |
⊢ ( 𝜑 → 𝐸 = ( 𝐴 Yrm 𝑄 ) ) |
27 |
|
jm2.27a27 |
⊢ ( 𝜑 → 𝑅 ∈ ℤ ) |
28 |
|
jm2.27a28 |
⊢ ( 𝜑 → 𝐼 = ( 𝐺 Xrm 𝑅 ) ) |
29 |
|
jm2.27a29 |
⊢ ( 𝜑 → 𝐻 = ( 𝐺 Yrm 𝑅 ) ) |
30 |
|
2z |
⊢ 2 ∈ ℤ |
31 |
3
|
nnzd |
⊢ ( 𝜑 → 𝐶 ∈ ℤ ) |
32 |
|
zmulcl |
⊢ ( ( 2 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → ( 2 · 𝐶 ) ∈ ℤ ) |
33 |
30 31 32
|
sylancr |
⊢ ( 𝜑 → ( 2 · 𝐶 ) ∈ ℤ ) |
34 |
2
|
nnzd |
⊢ ( 𝜑 → 𝐵 ∈ ℤ ) |
35 |
8
|
nn0zd |
⊢ ( 𝜑 → 𝐻 ∈ ℤ ) |
36 |
|
congsym |
⊢ ( ( ( ( 2 · 𝐶 ) ∈ ℤ ∧ 𝐻 ∈ ℤ ) ∧ ( 𝐵 ∈ ℤ ∧ ( 2 · 𝐶 ) ∥ ( 𝐻 − 𝐵 ) ) ) → ( 2 · 𝐶 ) ∥ ( 𝐵 − 𝐻 ) ) |
37 |
33 35 34 19 36
|
syl22anc |
⊢ ( 𝜑 → ( 2 · 𝐶 ) ∥ ( 𝐵 − 𝐻 ) ) |
38 |
7
|
nn0zd |
⊢ ( 𝜑 → 𝐺 ∈ ℤ ) |
39 |
|
peano2zm |
⊢ ( 𝐺 ∈ ℤ → ( 𝐺 − 1 ) ∈ ℤ ) |
40 |
38 39
|
syl |
⊢ ( 𝜑 → ( 𝐺 − 1 ) ∈ ℤ ) |
41 |
35 27
|
zsubcld |
⊢ ( 𝜑 → ( 𝐻 − 𝑅 ) ∈ ℤ ) |
42 |
8
|
nn0ge0d |
⊢ ( 𝜑 → 0 ≤ 𝐻 ) |
43 |
|
rmy0 |
⊢ ( 𝐺 ∈ ( ℤ≥ ‘ 2 ) → ( 𝐺 Yrm 0 ) = 0 ) |
44 |
13 43
|
syl |
⊢ ( 𝜑 → ( 𝐺 Yrm 0 ) = 0 ) |
45 |
29
|
eqcomd |
⊢ ( 𝜑 → ( 𝐺 Yrm 𝑅 ) = 𝐻 ) |
46 |
42 44 45
|
3brtr4d |
⊢ ( 𝜑 → ( 𝐺 Yrm 0 ) ≤ ( 𝐺 Yrm 𝑅 ) ) |
47 |
|
0zd |
⊢ ( 𝜑 → 0 ∈ ℤ ) |
48 |
|
lermy |
⊢ ( ( 𝐺 ∈ ( ℤ≥ ‘ 2 ) ∧ 0 ∈ ℤ ∧ 𝑅 ∈ ℤ ) → ( 0 ≤ 𝑅 ↔ ( 𝐺 Yrm 0 ) ≤ ( 𝐺 Yrm 𝑅 ) ) ) |
49 |
13 47 27 48
|
syl3anc |
⊢ ( 𝜑 → ( 0 ≤ 𝑅 ↔ ( 𝐺 Yrm 0 ) ≤ ( 𝐺 Yrm 𝑅 ) ) ) |
50 |
46 49
|
mpbird |
⊢ ( 𝜑 → 0 ≤ 𝑅 ) |
51 |
|
elnn0z |
⊢ ( 𝑅 ∈ ℕ0 ↔ ( 𝑅 ∈ ℤ ∧ 0 ≤ 𝑅 ) ) |
52 |
27 50 51
|
sylanbrc |
⊢ ( 𝜑 → 𝑅 ∈ ℕ0 ) |
53 |
|
jm2.16nn0 |
⊢ ( ( 𝐺 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑅 ∈ ℕ0 ) → ( 𝐺 − 1 ) ∥ ( ( 𝐺 Yrm 𝑅 ) − 𝑅 ) ) |
54 |
13 52 53
|
syl2anc |
⊢ ( 𝜑 → ( 𝐺 − 1 ) ∥ ( ( 𝐺 Yrm 𝑅 ) − 𝑅 ) ) |
55 |
29
|
oveq1d |
⊢ ( 𝜑 → ( 𝐻 − 𝑅 ) = ( ( 𝐺 Yrm 𝑅 ) − 𝑅 ) ) |
56 |
54 55
|
breqtrrd |
⊢ ( 𝜑 → ( 𝐺 − 1 ) ∥ ( 𝐻 − 𝑅 ) ) |
57 |
33 40 41 17 56
|
dvdstrd |
⊢ ( 𝜑 → ( 2 · 𝐶 ) ∥ ( 𝐻 − 𝑅 ) ) |
58 |
|
congtr |
⊢ ( ( ( ( 2 · 𝐶 ) ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐻 ∈ ℤ ∧ 𝑅 ∈ ℤ ) ∧ ( ( 2 · 𝐶 ) ∥ ( 𝐵 − 𝐻 ) ∧ ( 2 · 𝐶 ) ∥ ( 𝐻 − 𝑅 ) ) ) → ( 2 · 𝐶 ) ∥ ( 𝐵 − 𝑅 ) ) |
59 |
33 34 35 27 37 57 58
|
syl222anc |
⊢ ( 𝜑 → ( 2 · 𝐶 ) ∥ ( 𝐵 − 𝑅 ) ) |
60 |
59
|
orcd |
⊢ ( 𝜑 → ( ( 2 · 𝐶 ) ∥ ( 𝐵 − 𝑅 ) ∨ ( 2 · 𝐶 ) ∥ ( 𝐵 − - 𝑅 ) ) ) |
61 |
|
zmulcl |
⊢ ( ( 2 ∈ ℤ ∧ 𝑄 ∈ ℤ ) → ( 2 · 𝑄 ) ∈ ℤ ) |
62 |
30 24 61
|
sylancr |
⊢ ( 𝜑 → ( 2 · 𝑄 ) ∈ ℤ ) |
63 |
|
zsqcl |
⊢ ( 𝐶 ∈ ℤ → ( 𝐶 ↑ 2 ) ∈ ℤ ) |
64 |
31 63
|
syl |
⊢ ( 𝜑 → ( 𝐶 ↑ 2 ) ∈ ℤ ) |
65 |
|
dvdsmul2 |
⊢ ( ( 2 ∈ ℤ ∧ ( 𝐶 ↑ 2 ) ∈ ℤ ) → ( 𝐶 ↑ 2 ) ∥ ( 2 · ( 𝐶 ↑ 2 ) ) ) |
66 |
30 64 65
|
sylancr |
⊢ ( 𝜑 → ( 𝐶 ↑ 2 ) ∥ ( 2 · ( 𝐶 ↑ 2 ) ) ) |
67 |
10
|
nn0zd |
⊢ ( 𝜑 → 𝐽 ∈ ℤ ) |
68 |
67
|
peano2zd |
⊢ ( 𝜑 → ( 𝐽 + 1 ) ∈ ℤ ) |
69 |
|
zmulcl |
⊢ ( ( 2 ∈ ℤ ∧ ( 𝐶 ↑ 2 ) ∈ ℤ ) → ( 2 · ( 𝐶 ↑ 2 ) ) ∈ ℤ ) |
70 |
30 64 69
|
sylancr |
⊢ ( 𝜑 → ( 2 · ( 𝐶 ↑ 2 ) ) ∈ ℤ ) |
71 |
|
dvdsmultr2 |
⊢ ( ( ( 𝐶 ↑ 2 ) ∈ ℤ ∧ ( 𝐽 + 1 ) ∈ ℤ ∧ ( 2 · ( 𝐶 ↑ 2 ) ) ∈ ℤ ) → ( ( 𝐶 ↑ 2 ) ∥ ( 2 · ( 𝐶 ↑ 2 ) ) → ( 𝐶 ↑ 2 ) ∥ ( ( 𝐽 + 1 ) · ( 2 · ( 𝐶 ↑ 2 ) ) ) ) ) |
72 |
64 68 70 71
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝐶 ↑ 2 ) ∥ ( 2 · ( 𝐶 ↑ 2 ) ) → ( 𝐶 ↑ 2 ) ∥ ( ( 𝐽 + 1 ) · ( 2 · ( 𝐶 ↑ 2 ) ) ) ) ) |
73 |
66 72
|
mpd |
⊢ ( 𝜑 → ( 𝐶 ↑ 2 ) ∥ ( ( 𝐽 + 1 ) · ( 2 · ( 𝐶 ↑ 2 ) ) ) ) |
74 |
23
|
oveq1d |
⊢ ( 𝜑 → ( 𝐶 ↑ 2 ) = ( ( 𝐴 Yrm 𝑃 ) ↑ 2 ) ) |
75 |
15 26
|
eqtr3d |
⊢ ( 𝜑 → ( ( 𝐽 + 1 ) · ( 2 · ( 𝐶 ↑ 2 ) ) ) = ( 𝐴 Yrm 𝑄 ) ) |
76 |
73 74 75
|
3brtr3d |
⊢ ( 𝜑 → ( ( 𝐴 Yrm 𝑃 ) ↑ 2 ) ∥ ( 𝐴 Yrm 𝑄 ) ) |
77 |
68
|
zred |
⊢ ( 𝜑 → ( 𝐽 + 1 ) ∈ ℝ ) |
78 |
70
|
zred |
⊢ ( 𝜑 → ( 2 · ( 𝐶 ↑ 2 ) ) ∈ ℝ ) |
79 |
|
nn0p1nn |
⊢ ( 𝐽 ∈ ℕ0 → ( 𝐽 + 1 ) ∈ ℕ ) |
80 |
10 79
|
syl |
⊢ ( 𝜑 → ( 𝐽 + 1 ) ∈ ℕ ) |
81 |
80
|
nngt0d |
⊢ ( 𝜑 → 0 < ( 𝐽 + 1 ) ) |
82 |
|
2nn |
⊢ 2 ∈ ℕ |
83 |
3
|
nnsqcld |
⊢ ( 𝜑 → ( 𝐶 ↑ 2 ) ∈ ℕ ) |
84 |
|
nnmulcl |
⊢ ( ( 2 ∈ ℕ ∧ ( 𝐶 ↑ 2 ) ∈ ℕ ) → ( 2 · ( 𝐶 ↑ 2 ) ) ∈ ℕ ) |
85 |
82 83 84
|
sylancr |
⊢ ( 𝜑 → ( 2 · ( 𝐶 ↑ 2 ) ) ∈ ℕ ) |
86 |
85
|
nngt0d |
⊢ ( 𝜑 → 0 < ( 2 · ( 𝐶 ↑ 2 ) ) ) |
87 |
77 78 81 86
|
mulgt0d |
⊢ ( 𝜑 → 0 < ( ( 𝐽 + 1 ) · ( 2 · ( 𝐶 ↑ 2 ) ) ) ) |
88 |
87 15
|
breqtrrd |
⊢ ( 𝜑 → 0 < 𝐸 ) |
89 |
|
rmy0 |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → ( 𝐴 Yrm 0 ) = 0 ) |
90 |
1 89
|
syl |
⊢ ( 𝜑 → ( 𝐴 Yrm 0 ) = 0 ) |
91 |
26
|
eqcomd |
⊢ ( 𝜑 → ( 𝐴 Yrm 𝑄 ) = 𝐸 ) |
92 |
88 90 91
|
3brtr4d |
⊢ ( 𝜑 → ( 𝐴 Yrm 0 ) < ( 𝐴 Yrm 𝑄 ) ) |
93 |
|
ltrmy |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 0 ∈ ℤ ∧ 𝑄 ∈ ℤ ) → ( 0 < 𝑄 ↔ ( 𝐴 Yrm 0 ) < ( 𝐴 Yrm 𝑄 ) ) ) |
94 |
1 47 24 93
|
syl3anc |
⊢ ( 𝜑 → ( 0 < 𝑄 ↔ ( 𝐴 Yrm 0 ) < ( 𝐴 Yrm 𝑄 ) ) ) |
95 |
92 94
|
mpbird |
⊢ ( 𝜑 → 0 < 𝑄 ) |
96 |
|
elnnz |
⊢ ( 𝑄 ∈ ℕ ↔ ( 𝑄 ∈ ℤ ∧ 0 < 𝑄 ) ) |
97 |
24 95 96
|
sylanbrc |
⊢ ( 𝜑 → 𝑄 ∈ ℕ ) |
98 |
3
|
nngt0d |
⊢ ( 𝜑 → 0 < 𝐶 ) |
99 |
23
|
eqcomd |
⊢ ( 𝜑 → ( 𝐴 Yrm 𝑃 ) = 𝐶 ) |
100 |
98 90 99
|
3brtr4d |
⊢ ( 𝜑 → ( 𝐴 Yrm 0 ) < ( 𝐴 Yrm 𝑃 ) ) |
101 |
|
ltrmy |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 0 ∈ ℤ ∧ 𝑃 ∈ ℤ ) → ( 0 < 𝑃 ↔ ( 𝐴 Yrm 0 ) < ( 𝐴 Yrm 𝑃 ) ) ) |
102 |
1 47 21 101
|
syl3anc |
⊢ ( 𝜑 → ( 0 < 𝑃 ↔ ( 𝐴 Yrm 0 ) < ( 𝐴 Yrm 𝑃 ) ) ) |
103 |
100 102
|
mpbird |
⊢ ( 𝜑 → 0 < 𝑃 ) |
104 |
|
elnnz |
⊢ ( 𝑃 ∈ ℕ ↔ ( 𝑃 ∈ ℤ ∧ 0 < 𝑃 ) ) |
105 |
21 103 104
|
sylanbrc |
⊢ ( 𝜑 → 𝑃 ∈ ℕ ) |
106 |
|
jm2.20nn |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑄 ∈ ℕ ∧ 𝑃 ∈ ℕ ) → ( ( ( 𝐴 Yrm 𝑃 ) ↑ 2 ) ∥ ( 𝐴 Yrm 𝑄 ) ↔ ( 𝑃 · ( 𝐴 Yrm 𝑃 ) ) ∥ 𝑄 ) ) |
107 |
1 97 105 106
|
syl3anc |
⊢ ( 𝜑 → ( ( ( 𝐴 Yrm 𝑃 ) ↑ 2 ) ∥ ( 𝐴 Yrm 𝑄 ) ↔ ( 𝑃 · ( 𝐴 Yrm 𝑃 ) ) ∥ 𝑄 ) ) |
108 |
76 107
|
mpbid |
⊢ ( 𝜑 → ( 𝑃 · ( 𝐴 Yrm 𝑃 ) ) ∥ 𝑄 ) |
109 |
23 31
|
eqeltrrd |
⊢ ( 𝜑 → ( 𝐴 Yrm 𝑃 ) ∈ ℤ ) |
110 |
|
muldvds2 |
⊢ ( ( 𝑃 ∈ ℤ ∧ ( 𝐴 Yrm 𝑃 ) ∈ ℤ ∧ 𝑄 ∈ ℤ ) → ( ( 𝑃 · ( 𝐴 Yrm 𝑃 ) ) ∥ 𝑄 → ( 𝐴 Yrm 𝑃 ) ∥ 𝑄 ) ) |
111 |
21 109 24 110
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝑃 · ( 𝐴 Yrm 𝑃 ) ) ∥ 𝑄 → ( 𝐴 Yrm 𝑃 ) ∥ 𝑄 ) ) |
112 |
108 111
|
mpd |
⊢ ( 𝜑 → ( 𝐴 Yrm 𝑃 ) ∥ 𝑄 ) |
113 |
23 112
|
eqbrtrd |
⊢ ( 𝜑 → 𝐶 ∥ 𝑄 ) |
114 |
30
|
a1i |
⊢ ( 𝜑 → 2 ∈ ℤ ) |
115 |
|
dvdscmul |
⊢ ( ( 𝐶 ∈ ℤ ∧ 𝑄 ∈ ℤ ∧ 2 ∈ ℤ ) → ( 𝐶 ∥ 𝑄 → ( 2 · 𝐶 ) ∥ ( 2 · 𝑄 ) ) ) |
116 |
31 24 114 115
|
syl3anc |
⊢ ( 𝜑 → ( 𝐶 ∥ 𝑄 → ( 2 · 𝐶 ) ∥ ( 2 · 𝑄 ) ) ) |
117 |
113 116
|
mpd |
⊢ ( 𝜑 → ( 2 · 𝐶 ) ∥ ( 2 · 𝑄 ) ) |
118 |
6
|
nn0zd |
⊢ ( 𝜑 → 𝐹 ∈ ℤ ) |
119 |
25 118
|
eqeltrrd |
⊢ ( 𝜑 → ( 𝐴 Xrm 𝑄 ) ∈ ℤ ) |
120 |
|
frmy |
⊢ Yrm : ( ( ℤ≥ ‘ 2 ) × ℤ ) ⟶ ℤ |
121 |
120
|
fovcl |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑅 ∈ ℤ ) → ( 𝐴 Yrm 𝑅 ) ∈ ℤ ) |
122 |
1 27 121
|
syl2anc |
⊢ ( 𝜑 → ( 𝐴 Yrm 𝑅 ) ∈ ℤ ) |
123 |
29 35
|
eqeltrrd |
⊢ ( 𝜑 → ( 𝐺 Yrm 𝑅 ) ∈ ℤ ) |
124 |
|
eluzelz |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → 𝐴 ∈ ℤ ) |
125 |
1 124
|
syl |
⊢ ( 𝜑 → 𝐴 ∈ ℤ ) |
126 |
125 38
|
zsubcld |
⊢ ( 𝜑 → ( 𝐴 − 𝐺 ) ∈ ℤ ) |
127 |
122 123
|
zsubcld |
⊢ ( 𝜑 → ( ( 𝐴 Yrm 𝑅 ) − ( 𝐺 Yrm 𝑅 ) ) ∈ ℤ ) |
128 |
|
congsym |
⊢ ( ( ( 𝐹 ∈ ℤ ∧ 𝐺 ∈ ℤ ) ∧ ( 𝐴 ∈ ℤ ∧ 𝐹 ∥ ( 𝐺 − 𝐴 ) ) ) → 𝐹 ∥ ( 𝐴 − 𝐺 ) ) |
129 |
118 38 125 16 128
|
syl22anc |
⊢ ( 𝜑 → 𝐹 ∥ ( 𝐴 − 𝐺 ) ) |
130 |
25 129
|
eqbrtrrd |
⊢ ( 𝜑 → ( 𝐴 Xrm 𝑄 ) ∥ ( 𝐴 − 𝐺 ) ) |
131 |
|
jm2.15nn0 |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐺 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑅 ∈ ℕ0 ) → ( 𝐴 − 𝐺 ) ∥ ( ( 𝐴 Yrm 𝑅 ) − ( 𝐺 Yrm 𝑅 ) ) ) |
132 |
1 13 52 131
|
syl3anc |
⊢ ( 𝜑 → ( 𝐴 − 𝐺 ) ∥ ( ( 𝐴 Yrm 𝑅 ) − ( 𝐺 Yrm 𝑅 ) ) ) |
133 |
119 126 127 130 132
|
dvdstrd |
⊢ ( 𝜑 → ( 𝐴 Xrm 𝑄 ) ∥ ( ( 𝐴 Yrm 𝑅 ) − ( 𝐺 Yrm 𝑅 ) ) ) |
134 |
29 23
|
oveq12d |
⊢ ( 𝜑 → ( 𝐻 − 𝐶 ) = ( ( 𝐺 Yrm 𝑅 ) − ( 𝐴 Yrm 𝑃 ) ) ) |
135 |
18 25 134
|
3brtr3d |
⊢ ( 𝜑 → ( 𝐴 Xrm 𝑄 ) ∥ ( ( 𝐺 Yrm 𝑅 ) − ( 𝐴 Yrm 𝑃 ) ) ) |
136 |
|
congtr |
⊢ ( ( ( ( 𝐴 Xrm 𝑄 ) ∈ ℤ ∧ ( 𝐴 Yrm 𝑅 ) ∈ ℤ ) ∧ ( ( 𝐺 Yrm 𝑅 ) ∈ ℤ ∧ ( 𝐴 Yrm 𝑃 ) ∈ ℤ ) ∧ ( ( 𝐴 Xrm 𝑄 ) ∥ ( ( 𝐴 Yrm 𝑅 ) − ( 𝐺 Yrm 𝑅 ) ) ∧ ( 𝐴 Xrm 𝑄 ) ∥ ( ( 𝐺 Yrm 𝑅 ) − ( 𝐴 Yrm 𝑃 ) ) ) ) → ( 𝐴 Xrm 𝑄 ) ∥ ( ( 𝐴 Yrm 𝑅 ) − ( 𝐴 Yrm 𝑃 ) ) ) |
137 |
119 122 123 109 133 135 136
|
syl222anc |
⊢ ( 𝜑 → ( 𝐴 Xrm 𝑄 ) ∥ ( ( 𝐴 Yrm 𝑅 ) − ( 𝐴 Yrm 𝑃 ) ) ) |
138 |
137
|
orcd |
⊢ ( 𝜑 → ( ( 𝐴 Xrm 𝑄 ) ∥ ( ( 𝐴 Yrm 𝑅 ) − ( 𝐴 Yrm 𝑃 ) ) ∨ ( 𝐴 Xrm 𝑄 ) ∥ ( ( 𝐴 Yrm 𝑅 ) − - ( 𝐴 Yrm 𝑃 ) ) ) ) |
139 |
|
jm2.26 |
⊢ ( ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑄 ∈ ℕ ) ∧ ( 𝑅 ∈ ℤ ∧ 𝑃 ∈ ℤ ) ) → ( ( ( 𝐴 Xrm 𝑄 ) ∥ ( ( 𝐴 Yrm 𝑅 ) − ( 𝐴 Yrm 𝑃 ) ) ∨ ( 𝐴 Xrm 𝑄 ) ∥ ( ( 𝐴 Yrm 𝑅 ) − - ( 𝐴 Yrm 𝑃 ) ) ) ↔ ( ( 2 · 𝑄 ) ∥ ( 𝑅 − 𝑃 ) ∨ ( 2 · 𝑄 ) ∥ ( 𝑅 − - 𝑃 ) ) ) ) |
140 |
1 97 27 21 139
|
syl22anc |
⊢ ( 𝜑 → ( ( ( 𝐴 Xrm 𝑄 ) ∥ ( ( 𝐴 Yrm 𝑅 ) − ( 𝐴 Yrm 𝑃 ) ) ∨ ( 𝐴 Xrm 𝑄 ) ∥ ( ( 𝐴 Yrm 𝑅 ) − - ( 𝐴 Yrm 𝑃 ) ) ) ↔ ( ( 2 · 𝑄 ) ∥ ( 𝑅 − 𝑃 ) ∨ ( 2 · 𝑄 ) ∥ ( 𝑅 − - 𝑃 ) ) ) ) |
141 |
138 140
|
mpbid |
⊢ ( 𝜑 → ( ( 2 · 𝑄 ) ∥ ( 𝑅 − 𝑃 ) ∨ ( 2 · 𝑄 ) ∥ ( 𝑅 − - 𝑃 ) ) ) |
142 |
|
dvdsacongtr |
⊢ ( ( ( ( 2 · 𝑄 ) ∈ ℤ ∧ 𝑅 ∈ ℤ ) ∧ ( 𝑃 ∈ ℤ ∧ ( 2 · 𝐶 ) ∈ ℤ ) ∧ ( ( 2 · 𝐶 ) ∥ ( 2 · 𝑄 ) ∧ ( ( 2 · 𝑄 ) ∥ ( 𝑅 − 𝑃 ) ∨ ( 2 · 𝑄 ) ∥ ( 𝑅 − - 𝑃 ) ) ) ) → ( ( 2 · 𝐶 ) ∥ ( 𝑅 − 𝑃 ) ∨ ( 2 · 𝐶 ) ∥ ( 𝑅 − - 𝑃 ) ) ) |
143 |
62 27 21 33 117 141 142
|
syl222anc |
⊢ ( 𝜑 → ( ( 2 · 𝐶 ) ∥ ( 𝑅 − 𝑃 ) ∨ ( 2 · 𝐶 ) ∥ ( 𝑅 − - 𝑃 ) ) ) |
144 |
|
acongtr |
⊢ ( ( ( ( 2 · 𝐶 ) ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝑅 ∈ ℤ ∧ 𝑃 ∈ ℤ ) ∧ ( ( ( 2 · 𝐶 ) ∥ ( 𝐵 − 𝑅 ) ∨ ( 2 · 𝐶 ) ∥ ( 𝐵 − - 𝑅 ) ) ∧ ( ( 2 · 𝐶 ) ∥ ( 𝑅 − 𝑃 ) ∨ ( 2 · 𝐶 ) ∥ ( 𝑅 − - 𝑃 ) ) ) ) → ( ( 2 · 𝐶 ) ∥ ( 𝐵 − 𝑃 ) ∨ ( 2 · 𝐶 ) ∥ ( 𝐵 − - 𝑃 ) ) ) |
145 |
33 34 27 21 60 143 144
|
syl222anc |
⊢ ( 𝜑 → ( ( 2 · 𝐶 ) ∥ ( 𝐵 − 𝑃 ) ∨ ( 2 · 𝐶 ) ∥ ( 𝐵 − - 𝑃 ) ) ) |
146 |
2
|
nnnn0d |
⊢ ( 𝜑 → 𝐵 ∈ ℕ0 ) |
147 |
3
|
nnnn0d |
⊢ ( 𝜑 → 𝐶 ∈ ℕ0 ) |
148 |
|
elfz2nn0 |
⊢ ( 𝐵 ∈ ( 0 ... 𝐶 ) ↔ ( 𝐵 ∈ ℕ0 ∧ 𝐶 ∈ ℕ0 ∧ 𝐵 ≤ 𝐶 ) ) |
149 |
146 147 20 148
|
syl3anbrc |
⊢ ( 𝜑 → 𝐵 ∈ ( 0 ... 𝐶 ) ) |
150 |
105
|
nnnn0d |
⊢ ( 𝜑 → 𝑃 ∈ ℕ0 ) |
151 |
|
rmygeid |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑃 ∈ ℕ0 ) → 𝑃 ≤ ( 𝐴 Yrm 𝑃 ) ) |
152 |
1 150 151
|
syl2anc |
⊢ ( 𝜑 → 𝑃 ≤ ( 𝐴 Yrm 𝑃 ) ) |
153 |
152 23
|
breqtrrd |
⊢ ( 𝜑 → 𝑃 ≤ 𝐶 ) |
154 |
|
elfz2nn0 |
⊢ ( 𝑃 ∈ ( 0 ... 𝐶 ) ↔ ( 𝑃 ∈ ℕ0 ∧ 𝐶 ∈ ℕ0 ∧ 𝑃 ≤ 𝐶 ) ) |
155 |
150 147 153 154
|
syl3anbrc |
⊢ ( 𝜑 → 𝑃 ∈ ( 0 ... 𝐶 ) ) |
156 |
|
acongeq |
⊢ ( ( 𝐶 ∈ ℕ ∧ 𝐵 ∈ ( 0 ... 𝐶 ) ∧ 𝑃 ∈ ( 0 ... 𝐶 ) ) → ( 𝐵 = 𝑃 ↔ ( ( 2 · 𝐶 ) ∥ ( 𝐵 − 𝑃 ) ∨ ( 2 · 𝐶 ) ∥ ( 𝐵 − - 𝑃 ) ) ) ) |
157 |
3 149 155 156
|
syl3anc |
⊢ ( 𝜑 → ( 𝐵 = 𝑃 ↔ ( ( 2 · 𝐶 ) ∥ ( 𝐵 − 𝑃 ) ∨ ( 2 · 𝐶 ) ∥ ( 𝐵 − - 𝑃 ) ) ) ) |
158 |
145 157
|
mpbird |
⊢ ( 𝜑 → 𝐵 = 𝑃 ) |
159 |
158
|
oveq2d |
⊢ ( 𝜑 → ( 𝐴 Yrm 𝐵 ) = ( 𝐴 Yrm 𝑃 ) ) |
160 |
23 159
|
eqtr4d |
⊢ ( 𝜑 → 𝐶 = ( 𝐴 Yrm 𝐵 ) ) |