Step |
Hyp |
Ref |
Expression |
1 |
|
jm2.27a1 |
|- ( ph -> A e. ( ZZ>= ` 2 ) ) |
2 |
|
jm2.27a2 |
|- ( ph -> B e. NN ) |
3 |
|
jm2.27a3 |
|- ( ph -> C e. NN ) |
4 |
|
jm2.27a4 |
|- ( ph -> D e. NN0 ) |
5 |
|
jm2.27a5 |
|- ( ph -> E e. NN0 ) |
6 |
|
jm2.27a6 |
|- ( ph -> F e. NN0 ) |
7 |
|
jm2.27a7 |
|- ( ph -> G e. NN0 ) |
8 |
|
jm2.27a8 |
|- ( ph -> H e. NN0 ) |
9 |
|
jm2.27a9 |
|- ( ph -> I e. NN0 ) |
10 |
|
jm2.27a10 |
|- ( ph -> J e. NN0 ) |
11 |
|
jm2.27a11 |
|- ( ph -> ( ( D ^ 2 ) - ( ( ( A ^ 2 ) - 1 ) x. ( C ^ 2 ) ) ) = 1 ) |
12 |
|
jm2.27a12 |
|- ( ph -> ( ( F ^ 2 ) - ( ( ( A ^ 2 ) - 1 ) x. ( E ^ 2 ) ) ) = 1 ) |
13 |
|
jm2.27a13 |
|- ( ph -> G e. ( ZZ>= ` 2 ) ) |
14 |
|
jm2.27a14 |
|- ( ph -> ( ( I ^ 2 ) - ( ( ( G ^ 2 ) - 1 ) x. ( H ^ 2 ) ) ) = 1 ) |
15 |
|
jm2.27a15 |
|- ( ph -> E = ( ( J + 1 ) x. ( 2 x. ( C ^ 2 ) ) ) ) |
16 |
|
jm2.27a16 |
|- ( ph -> F || ( G - A ) ) |
17 |
|
jm2.27a17 |
|- ( ph -> ( 2 x. C ) || ( G - 1 ) ) |
18 |
|
jm2.27a18 |
|- ( ph -> F || ( H - C ) ) |
19 |
|
jm2.27a19 |
|- ( ph -> ( 2 x. C ) || ( H - B ) ) |
20 |
|
jm2.27a20 |
|- ( ph -> B <_ C ) |
21 |
|
jm2.27a21 |
|- ( ph -> P e. ZZ ) |
22 |
|
jm2.27a22 |
|- ( ph -> D = ( A rmX P ) ) |
23 |
|
jm2.27a23 |
|- ( ph -> C = ( A rmY P ) ) |
24 |
|
jm2.27a24 |
|- ( ph -> Q e. ZZ ) |
25 |
|
jm2.27a25 |
|- ( ph -> F = ( A rmX Q ) ) |
26 |
|
jm2.27a26 |
|- ( ph -> E = ( A rmY Q ) ) |
27 |
|
jm2.27a27 |
|- ( ph -> R e. ZZ ) |
28 |
|
jm2.27a28 |
|- ( ph -> I = ( G rmX R ) ) |
29 |
|
jm2.27a29 |
|- ( ph -> H = ( G rmY R ) ) |
30 |
|
2z |
|- 2 e. ZZ |
31 |
3
|
nnzd |
|- ( ph -> C e. ZZ ) |
32 |
|
zmulcl |
|- ( ( 2 e. ZZ /\ C e. ZZ ) -> ( 2 x. C ) e. ZZ ) |
33 |
30 31 32
|
sylancr |
|- ( ph -> ( 2 x. C ) e. ZZ ) |
34 |
2
|
nnzd |
|- ( ph -> B e. ZZ ) |
35 |
8
|
nn0zd |
|- ( ph -> H e. ZZ ) |
36 |
|
congsym |
|- ( ( ( ( 2 x. C ) e. ZZ /\ H e. ZZ ) /\ ( B e. ZZ /\ ( 2 x. C ) || ( H - B ) ) ) -> ( 2 x. C ) || ( B - H ) ) |
37 |
33 35 34 19 36
|
syl22anc |
|- ( ph -> ( 2 x. C ) || ( B - H ) ) |
38 |
7
|
nn0zd |
|- ( ph -> G e. ZZ ) |
39 |
|
peano2zm |
|- ( G e. ZZ -> ( G - 1 ) e. ZZ ) |
40 |
38 39
|
syl |
|- ( ph -> ( G - 1 ) e. ZZ ) |
41 |
35 27
|
zsubcld |
|- ( ph -> ( H - R ) e. ZZ ) |
42 |
8
|
nn0ge0d |
|- ( ph -> 0 <_ H ) |
43 |
|
rmy0 |
|- ( G e. ( ZZ>= ` 2 ) -> ( G rmY 0 ) = 0 ) |
44 |
13 43
|
syl |
|- ( ph -> ( G rmY 0 ) = 0 ) |
45 |
29
|
eqcomd |
|- ( ph -> ( G rmY R ) = H ) |
46 |
42 44 45
|
3brtr4d |
|- ( ph -> ( G rmY 0 ) <_ ( G rmY R ) ) |
47 |
|
0zd |
|- ( ph -> 0 e. ZZ ) |
48 |
|
lermy |
|- ( ( G e. ( ZZ>= ` 2 ) /\ 0 e. ZZ /\ R e. ZZ ) -> ( 0 <_ R <-> ( G rmY 0 ) <_ ( G rmY R ) ) ) |
49 |
13 47 27 48
|
syl3anc |
|- ( ph -> ( 0 <_ R <-> ( G rmY 0 ) <_ ( G rmY R ) ) ) |
50 |
46 49
|
mpbird |
|- ( ph -> 0 <_ R ) |
51 |
|
elnn0z |
|- ( R e. NN0 <-> ( R e. ZZ /\ 0 <_ R ) ) |
52 |
27 50 51
|
sylanbrc |
|- ( ph -> R e. NN0 ) |
53 |
|
jm2.16nn0 |
|- ( ( G e. ( ZZ>= ` 2 ) /\ R e. NN0 ) -> ( G - 1 ) || ( ( G rmY R ) - R ) ) |
54 |
13 52 53
|
syl2anc |
|- ( ph -> ( G - 1 ) || ( ( G rmY R ) - R ) ) |
55 |
29
|
oveq1d |
|- ( ph -> ( H - R ) = ( ( G rmY R ) - R ) ) |
56 |
54 55
|
breqtrrd |
|- ( ph -> ( G - 1 ) || ( H - R ) ) |
57 |
33 40 41 17 56
|
dvdstrd |
|- ( ph -> ( 2 x. C ) || ( H - R ) ) |
58 |
|
congtr |
|- ( ( ( ( 2 x. C ) e. ZZ /\ B e. ZZ ) /\ ( H e. ZZ /\ R e. ZZ ) /\ ( ( 2 x. C ) || ( B - H ) /\ ( 2 x. C ) || ( H - R ) ) ) -> ( 2 x. C ) || ( B - R ) ) |
59 |
33 34 35 27 37 57 58
|
syl222anc |
|- ( ph -> ( 2 x. C ) || ( B - R ) ) |
60 |
59
|
orcd |
|- ( ph -> ( ( 2 x. C ) || ( B - R ) \/ ( 2 x. C ) || ( B - -u R ) ) ) |
61 |
|
zmulcl |
|- ( ( 2 e. ZZ /\ Q e. ZZ ) -> ( 2 x. Q ) e. ZZ ) |
62 |
30 24 61
|
sylancr |
|- ( ph -> ( 2 x. Q ) e. ZZ ) |
63 |
|
zsqcl |
|- ( C e. ZZ -> ( C ^ 2 ) e. ZZ ) |
64 |
31 63
|
syl |
|- ( ph -> ( C ^ 2 ) e. ZZ ) |
65 |
|
dvdsmul2 |
|- ( ( 2 e. ZZ /\ ( C ^ 2 ) e. ZZ ) -> ( C ^ 2 ) || ( 2 x. ( C ^ 2 ) ) ) |
66 |
30 64 65
|
sylancr |
|- ( ph -> ( C ^ 2 ) || ( 2 x. ( C ^ 2 ) ) ) |
67 |
10
|
nn0zd |
|- ( ph -> J e. ZZ ) |
68 |
67
|
peano2zd |
|- ( ph -> ( J + 1 ) e. ZZ ) |
69 |
|
zmulcl |
|- ( ( 2 e. ZZ /\ ( C ^ 2 ) e. ZZ ) -> ( 2 x. ( C ^ 2 ) ) e. ZZ ) |
70 |
30 64 69
|
sylancr |
|- ( ph -> ( 2 x. ( C ^ 2 ) ) e. ZZ ) |
71 |
|
dvdsmultr2 |
|- ( ( ( C ^ 2 ) e. ZZ /\ ( J + 1 ) e. ZZ /\ ( 2 x. ( C ^ 2 ) ) e. ZZ ) -> ( ( C ^ 2 ) || ( 2 x. ( C ^ 2 ) ) -> ( C ^ 2 ) || ( ( J + 1 ) x. ( 2 x. ( C ^ 2 ) ) ) ) ) |
72 |
64 68 70 71
|
syl3anc |
|- ( ph -> ( ( C ^ 2 ) || ( 2 x. ( C ^ 2 ) ) -> ( C ^ 2 ) || ( ( J + 1 ) x. ( 2 x. ( C ^ 2 ) ) ) ) ) |
73 |
66 72
|
mpd |
|- ( ph -> ( C ^ 2 ) || ( ( J + 1 ) x. ( 2 x. ( C ^ 2 ) ) ) ) |
74 |
23
|
oveq1d |
|- ( ph -> ( C ^ 2 ) = ( ( A rmY P ) ^ 2 ) ) |
75 |
15 26
|
eqtr3d |
|- ( ph -> ( ( J + 1 ) x. ( 2 x. ( C ^ 2 ) ) ) = ( A rmY Q ) ) |
76 |
73 74 75
|
3brtr3d |
|- ( ph -> ( ( A rmY P ) ^ 2 ) || ( A rmY Q ) ) |
77 |
68
|
zred |
|- ( ph -> ( J + 1 ) e. RR ) |
78 |
70
|
zred |
|- ( ph -> ( 2 x. ( C ^ 2 ) ) e. RR ) |
79 |
|
nn0p1nn |
|- ( J e. NN0 -> ( J + 1 ) e. NN ) |
80 |
10 79
|
syl |
|- ( ph -> ( J + 1 ) e. NN ) |
81 |
80
|
nngt0d |
|- ( ph -> 0 < ( J + 1 ) ) |
82 |
|
2nn |
|- 2 e. NN |
83 |
3
|
nnsqcld |
|- ( ph -> ( C ^ 2 ) e. NN ) |
84 |
|
nnmulcl |
|- ( ( 2 e. NN /\ ( C ^ 2 ) e. NN ) -> ( 2 x. ( C ^ 2 ) ) e. NN ) |
85 |
82 83 84
|
sylancr |
|- ( ph -> ( 2 x. ( C ^ 2 ) ) e. NN ) |
86 |
85
|
nngt0d |
|- ( ph -> 0 < ( 2 x. ( C ^ 2 ) ) ) |
87 |
77 78 81 86
|
mulgt0d |
|- ( ph -> 0 < ( ( J + 1 ) x. ( 2 x. ( C ^ 2 ) ) ) ) |
88 |
87 15
|
breqtrrd |
|- ( ph -> 0 < E ) |
89 |
|
rmy0 |
|- ( A e. ( ZZ>= ` 2 ) -> ( A rmY 0 ) = 0 ) |
90 |
1 89
|
syl |
|- ( ph -> ( A rmY 0 ) = 0 ) |
91 |
26
|
eqcomd |
|- ( ph -> ( A rmY Q ) = E ) |
92 |
88 90 91
|
3brtr4d |
|- ( ph -> ( A rmY 0 ) < ( A rmY Q ) ) |
93 |
|
ltrmy |
|- ( ( A e. ( ZZ>= ` 2 ) /\ 0 e. ZZ /\ Q e. ZZ ) -> ( 0 < Q <-> ( A rmY 0 ) < ( A rmY Q ) ) ) |
94 |
1 47 24 93
|
syl3anc |
|- ( ph -> ( 0 < Q <-> ( A rmY 0 ) < ( A rmY Q ) ) ) |
95 |
92 94
|
mpbird |
|- ( ph -> 0 < Q ) |
96 |
|
elnnz |
|- ( Q e. NN <-> ( Q e. ZZ /\ 0 < Q ) ) |
97 |
24 95 96
|
sylanbrc |
|- ( ph -> Q e. NN ) |
98 |
3
|
nngt0d |
|- ( ph -> 0 < C ) |
99 |
23
|
eqcomd |
|- ( ph -> ( A rmY P ) = C ) |
100 |
98 90 99
|
3brtr4d |
|- ( ph -> ( A rmY 0 ) < ( A rmY P ) ) |
101 |
|
ltrmy |
|- ( ( A e. ( ZZ>= ` 2 ) /\ 0 e. ZZ /\ P e. ZZ ) -> ( 0 < P <-> ( A rmY 0 ) < ( A rmY P ) ) ) |
102 |
1 47 21 101
|
syl3anc |
|- ( ph -> ( 0 < P <-> ( A rmY 0 ) < ( A rmY P ) ) ) |
103 |
100 102
|
mpbird |
|- ( ph -> 0 < P ) |
104 |
|
elnnz |
|- ( P e. NN <-> ( P e. ZZ /\ 0 < P ) ) |
105 |
21 103 104
|
sylanbrc |
|- ( ph -> P e. NN ) |
106 |
|
jm2.20nn |
|- ( ( A e. ( ZZ>= ` 2 ) /\ Q e. NN /\ P e. NN ) -> ( ( ( A rmY P ) ^ 2 ) || ( A rmY Q ) <-> ( P x. ( A rmY P ) ) || Q ) ) |
107 |
1 97 105 106
|
syl3anc |
|- ( ph -> ( ( ( A rmY P ) ^ 2 ) || ( A rmY Q ) <-> ( P x. ( A rmY P ) ) || Q ) ) |
108 |
76 107
|
mpbid |
|- ( ph -> ( P x. ( A rmY P ) ) || Q ) |
109 |
23 31
|
eqeltrrd |
|- ( ph -> ( A rmY P ) e. ZZ ) |
110 |
|
muldvds2 |
|- ( ( P e. ZZ /\ ( A rmY P ) e. ZZ /\ Q e. ZZ ) -> ( ( P x. ( A rmY P ) ) || Q -> ( A rmY P ) || Q ) ) |
111 |
21 109 24 110
|
syl3anc |
|- ( ph -> ( ( P x. ( A rmY P ) ) || Q -> ( A rmY P ) || Q ) ) |
112 |
108 111
|
mpd |
|- ( ph -> ( A rmY P ) || Q ) |
113 |
23 112
|
eqbrtrd |
|- ( ph -> C || Q ) |
114 |
30
|
a1i |
|- ( ph -> 2 e. ZZ ) |
115 |
|
dvdscmul |
|- ( ( C e. ZZ /\ Q e. ZZ /\ 2 e. ZZ ) -> ( C || Q -> ( 2 x. C ) || ( 2 x. Q ) ) ) |
116 |
31 24 114 115
|
syl3anc |
|- ( ph -> ( C || Q -> ( 2 x. C ) || ( 2 x. Q ) ) ) |
117 |
113 116
|
mpd |
|- ( ph -> ( 2 x. C ) || ( 2 x. Q ) ) |
118 |
6
|
nn0zd |
|- ( ph -> F e. ZZ ) |
119 |
25 118
|
eqeltrrd |
|- ( ph -> ( A rmX Q ) e. ZZ ) |
120 |
|
frmy |
|- rmY : ( ( ZZ>= ` 2 ) X. ZZ ) --> ZZ |
121 |
120
|
fovcl |
|- ( ( A e. ( ZZ>= ` 2 ) /\ R e. ZZ ) -> ( A rmY R ) e. ZZ ) |
122 |
1 27 121
|
syl2anc |
|- ( ph -> ( A rmY R ) e. ZZ ) |
123 |
29 35
|
eqeltrrd |
|- ( ph -> ( G rmY R ) e. ZZ ) |
124 |
|
eluzelz |
|- ( A e. ( ZZ>= ` 2 ) -> A e. ZZ ) |
125 |
1 124
|
syl |
|- ( ph -> A e. ZZ ) |
126 |
125 38
|
zsubcld |
|- ( ph -> ( A - G ) e. ZZ ) |
127 |
122 123
|
zsubcld |
|- ( ph -> ( ( A rmY R ) - ( G rmY R ) ) e. ZZ ) |
128 |
|
congsym |
|- ( ( ( F e. ZZ /\ G e. ZZ ) /\ ( A e. ZZ /\ F || ( G - A ) ) ) -> F || ( A - G ) ) |
129 |
118 38 125 16 128
|
syl22anc |
|- ( ph -> F || ( A - G ) ) |
130 |
25 129
|
eqbrtrrd |
|- ( ph -> ( A rmX Q ) || ( A - G ) ) |
131 |
|
jm2.15nn0 |
|- ( ( A e. ( ZZ>= ` 2 ) /\ G e. ( ZZ>= ` 2 ) /\ R e. NN0 ) -> ( A - G ) || ( ( A rmY R ) - ( G rmY R ) ) ) |
132 |
1 13 52 131
|
syl3anc |
|- ( ph -> ( A - G ) || ( ( A rmY R ) - ( G rmY R ) ) ) |
133 |
119 126 127 130 132
|
dvdstrd |
|- ( ph -> ( A rmX Q ) || ( ( A rmY R ) - ( G rmY R ) ) ) |
134 |
29 23
|
oveq12d |
|- ( ph -> ( H - C ) = ( ( G rmY R ) - ( A rmY P ) ) ) |
135 |
18 25 134
|
3brtr3d |
|- ( ph -> ( A rmX Q ) || ( ( G rmY R ) - ( A rmY P ) ) ) |
136 |
|
congtr |
|- ( ( ( ( A rmX Q ) e. ZZ /\ ( A rmY R ) e. ZZ ) /\ ( ( G rmY R ) e. ZZ /\ ( A rmY P ) e. ZZ ) /\ ( ( A rmX Q ) || ( ( A rmY R ) - ( G rmY R ) ) /\ ( A rmX Q ) || ( ( G rmY R ) - ( A rmY P ) ) ) ) -> ( A rmX Q ) || ( ( A rmY R ) - ( A rmY P ) ) ) |
137 |
119 122 123 109 133 135 136
|
syl222anc |
|- ( ph -> ( A rmX Q ) || ( ( A rmY R ) - ( A rmY P ) ) ) |
138 |
137
|
orcd |
|- ( ph -> ( ( A rmX Q ) || ( ( A rmY R ) - ( A rmY P ) ) \/ ( A rmX Q ) || ( ( A rmY R ) - -u ( A rmY P ) ) ) ) |
139 |
|
jm2.26 |
|- ( ( ( A e. ( ZZ>= ` 2 ) /\ Q e. NN ) /\ ( R e. ZZ /\ P e. ZZ ) ) -> ( ( ( A rmX Q ) || ( ( A rmY R ) - ( A rmY P ) ) \/ ( A rmX Q ) || ( ( A rmY R ) - -u ( A rmY P ) ) ) <-> ( ( 2 x. Q ) || ( R - P ) \/ ( 2 x. Q ) || ( R - -u P ) ) ) ) |
140 |
1 97 27 21 139
|
syl22anc |
|- ( ph -> ( ( ( A rmX Q ) || ( ( A rmY R ) - ( A rmY P ) ) \/ ( A rmX Q ) || ( ( A rmY R ) - -u ( A rmY P ) ) ) <-> ( ( 2 x. Q ) || ( R - P ) \/ ( 2 x. Q ) || ( R - -u P ) ) ) ) |
141 |
138 140
|
mpbid |
|- ( ph -> ( ( 2 x. Q ) || ( R - P ) \/ ( 2 x. Q ) || ( R - -u P ) ) ) |
142 |
|
dvdsacongtr |
|- ( ( ( ( 2 x. Q ) e. ZZ /\ R e. ZZ ) /\ ( P e. ZZ /\ ( 2 x. C ) e. ZZ ) /\ ( ( 2 x. C ) || ( 2 x. Q ) /\ ( ( 2 x. Q ) || ( R - P ) \/ ( 2 x. Q ) || ( R - -u P ) ) ) ) -> ( ( 2 x. C ) || ( R - P ) \/ ( 2 x. C ) || ( R - -u P ) ) ) |
143 |
62 27 21 33 117 141 142
|
syl222anc |
|- ( ph -> ( ( 2 x. C ) || ( R - P ) \/ ( 2 x. C ) || ( R - -u P ) ) ) |
144 |
|
acongtr |
|- ( ( ( ( 2 x. C ) e. ZZ /\ B e. ZZ ) /\ ( R e. ZZ /\ P e. ZZ ) /\ ( ( ( 2 x. C ) || ( B - R ) \/ ( 2 x. C ) || ( B - -u R ) ) /\ ( ( 2 x. C ) || ( R - P ) \/ ( 2 x. C ) || ( R - -u P ) ) ) ) -> ( ( 2 x. C ) || ( B - P ) \/ ( 2 x. C ) || ( B - -u P ) ) ) |
145 |
33 34 27 21 60 143 144
|
syl222anc |
|- ( ph -> ( ( 2 x. C ) || ( B - P ) \/ ( 2 x. C ) || ( B - -u P ) ) ) |
146 |
2
|
nnnn0d |
|- ( ph -> B e. NN0 ) |
147 |
3
|
nnnn0d |
|- ( ph -> C e. NN0 ) |
148 |
|
elfz2nn0 |
|- ( B e. ( 0 ... C ) <-> ( B e. NN0 /\ C e. NN0 /\ B <_ C ) ) |
149 |
146 147 20 148
|
syl3anbrc |
|- ( ph -> B e. ( 0 ... C ) ) |
150 |
105
|
nnnn0d |
|- ( ph -> P e. NN0 ) |
151 |
|
rmygeid |
|- ( ( A e. ( ZZ>= ` 2 ) /\ P e. NN0 ) -> P <_ ( A rmY P ) ) |
152 |
1 150 151
|
syl2anc |
|- ( ph -> P <_ ( A rmY P ) ) |
153 |
152 23
|
breqtrrd |
|- ( ph -> P <_ C ) |
154 |
|
elfz2nn0 |
|- ( P e. ( 0 ... C ) <-> ( P e. NN0 /\ C e. NN0 /\ P <_ C ) ) |
155 |
150 147 153 154
|
syl3anbrc |
|- ( ph -> P e. ( 0 ... C ) ) |
156 |
|
acongeq |
|- ( ( C e. NN /\ B e. ( 0 ... C ) /\ P e. ( 0 ... C ) ) -> ( B = P <-> ( ( 2 x. C ) || ( B - P ) \/ ( 2 x. C ) || ( B - -u P ) ) ) ) |
157 |
3 149 155 156
|
syl3anc |
|- ( ph -> ( B = P <-> ( ( 2 x. C ) || ( B - P ) \/ ( 2 x. C ) || ( B - -u P ) ) ) ) |
158 |
145 157
|
mpbird |
|- ( ph -> B = P ) |
159 |
158
|
oveq2d |
|- ( ph -> ( A rmY B ) = ( A rmY P ) ) |
160 |
23 159
|
eqtr4d |
|- ( ph -> C = ( A rmY B ) ) |