Metamath Proof Explorer


Theorem latmassOLD

Description: Ortholattice meet is associative. (This can also be proved for lattices with a longer proof.) ( inass analog.) (Contributed by NM, 7-Nov-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses olmass.b B=BaseK
olmass.m ˙=meetK
Assertion latmassOLD KOLXBYBZBX˙Y˙Z=X˙Y˙Z

Proof

Step Hyp Ref Expression
1 olmass.b B=BaseK
2 olmass.m ˙=meetK
3 simpl KOLXBYBZBKOL
4 ollat KOLKLat
5 4 adantr KOLXBYBZBKLat
6 olop KOLKOP
7 6 adantr KOLXBYBZBKOP
8 simpr1 KOLXBYBZBXB
9 eqid ocK=ocK
10 1 9 opoccl KOPXBocKXB
11 7 8 10 syl2anc KOLXBYBZBocKXB
12 simpr2 KOLXBYBZBYB
13 1 9 opoccl KOPYBocKYB
14 7 12 13 syl2anc KOLXBYBZBocKYB
15 eqid joinK=joinK
16 1 15 latjcl KLatocKXBocKYBocKXjoinKocKYB
17 5 11 14 16 syl3anc KOLXBYBZBocKXjoinKocKYB
18 simpr3 KOLXBYBZBZB
19 1 15 2 9 oldmj3 KOLocKXjoinKocKYBZBocKocKXjoinKocKYjoinKocKZ=ocKocKXjoinKocKY˙Z
20 3 17 18 19 syl3anc KOLXBYBZBocKocKXjoinKocKYjoinKocKZ=ocKocKXjoinKocKY˙Z
21 1 9 opoccl KOPZBocKZB
22 7 18 21 syl2anc KOLXBYBZBocKZB
23 1 15 latjass KLatocKXBocKYBocKZBocKXjoinKocKYjoinKocKZ=ocKXjoinKocKYjoinKocKZ
24 5 11 14 22 23 syl13anc KOLXBYBZBocKXjoinKocKYjoinKocKZ=ocKXjoinKocKYjoinKocKZ
25 24 fveq2d KOLXBYBZBocKocKXjoinKocKYjoinKocKZ=ocKocKXjoinKocKYjoinKocKZ
26 1 15 2 9 oldmj4 KOLXBYBocKocKXjoinKocKY=X˙Y
27 26 3adant3r3 KOLXBYBZBocKocKXjoinKocKY=X˙Y
28 27 oveq1d KOLXBYBZBocKocKXjoinKocKY˙Z=X˙Y˙Z
29 20 25 28 3eqtr3rd KOLXBYBZBX˙Y˙Z=ocKocKXjoinKocKYjoinKocKZ
30 1 15 latjcl KLatocKYBocKZBocKYjoinKocKZB
31 5 14 22 30 syl3anc KOLXBYBZBocKYjoinKocKZB
32 1 15 2 9 oldmj2 KOLXBocKYjoinKocKZBocKocKXjoinKocKYjoinKocKZ=X˙ocKocKYjoinKocKZ
33 3 8 31 32 syl3anc KOLXBYBZBocKocKXjoinKocKYjoinKocKZ=X˙ocKocKYjoinKocKZ
34 1 15 2 9 oldmj4 KOLYBZBocKocKYjoinKocKZ=Y˙Z
35 34 3adant3r1 KOLXBYBZBocKocKYjoinKocKZ=Y˙Z
36 35 oveq2d KOLXBYBZBX˙ocKocKYjoinKocKZ=X˙Y˙Z
37 29 33 36 3eqtrd KOLXBYBZBX˙Y˙Z=X˙Y˙Z