Metamath Proof Explorer


Theorem lcd0vvalN

Description: Value of the zero functional at any vector. (Contributed by NM, 28-Mar-2015) (New usage is discouraged.)

Ref Expression
Hypotheses lcd0vval.h H=LHypK
lcd0vval.u U=DVecHKW
lcd0vval.v V=BaseU
lcd0vval.s S=ScalarU
lcd0vval.z 0˙=0S
lcd0vval.c C=LCDualKW
lcd0vval.o O=0C
lcd0vval.k φKHLWH
lcd0vval.x φXV
Assertion lcd0vvalN φOX=0˙

Proof

Step Hyp Ref Expression
1 lcd0vval.h H=LHypK
2 lcd0vval.u U=DVecHKW
3 lcd0vval.v V=BaseU
4 lcd0vval.s S=ScalarU
5 lcd0vval.z 0˙=0S
6 lcd0vval.c C=LCDualKW
7 lcd0vval.o O=0C
8 lcd0vval.k φKHLWH
9 lcd0vval.x φXV
10 1 2 3 4 5 6 7 8 lcd0v φO=V×0˙
11 10 fveq1d φOX=V×0˙X
12 5 fvexi 0˙V
13 12 fvconst2 XVV×0˙X=0˙
14 9 13 syl φV×0˙X=0˙
15 11 14 eqtrd φOX=0˙