Metamath Proof Explorer


Theorem lcdlss2N

Description: Subspaces of a dual vector space of functionals with closed kernels. (Contributed by NM, 13-Mar-2015) (New usage is discouraged.)

Ref Expression
Hypotheses lcdlss2.h H=LHypK
lcdlss2.c C=LCDualKW
lcdlss2.s S=LSubSpC
lcdlss2.v V=BaseC
lcdlss2.u U=DVecHKW
lcdlss2.d D=LDualU
lcdlss2.t T=LSubSpD
lcdlss2.k φKHLWH
Assertion lcdlss2N φS=T𝒫V

Proof

Step Hyp Ref Expression
1 lcdlss2.h H=LHypK
2 lcdlss2.c C=LCDualKW
3 lcdlss2.s S=LSubSpC
4 lcdlss2.v V=BaseC
5 lcdlss2.u U=DVecHKW
6 lcdlss2.d D=LDualU
7 lcdlss2.t T=LSubSpD
8 lcdlss2.k φKHLWH
9 eqid ocHKW=ocHKW
10 eqid LFnlU=LFnlU
11 eqid LKerU=LKerU
12 eqid fLFnlU|ocHKWocHKWLKerUf=LKerUf=fLFnlU|ocHKWocHKWLKerUf=LKerUf
13 1 9 2 3 5 10 11 6 7 12 8 lcdlss φS=T𝒫fLFnlU|ocHKWocHKWLKerUf=LKerUf
14 1 9 2 4 5 10 11 12 8 lcdvbase φV=fLFnlU|ocHKWocHKWLKerUf=LKerUf
15 14 pweqd φ𝒫V=𝒫fLFnlU|ocHKWocHKWLKerUf=LKerUf
16 15 ineq2d φT𝒫V=T𝒫fLFnlU|ocHKWocHKWLKerUf=LKerUf
17 13 16 eqtr4d φS=T𝒫V