Metamath Proof Explorer


Theorem lcdvaddval

Description: The value of the value of vector addition in the closed kernel vector space dual. (Contributed by NM, 10-Jun-2015)

Ref Expression
Hypotheses lcdvaddval.h H = LHyp K
lcdvaddval.u U = DVecH K W
lcdvaddval.v V = Base U
lcdvaddval.r R = Scalar U
lcdvaddval.a + ˙ = + R
lcdvaddval.c C = LCDual K W
lcdvaddval.d D = Base C
lcdvaddval.p ˙ = + C
lcdvaddval.k φ K HL W H
lcdvaddval.f φ F D
lcdvaddval.g φ G D
lcdvaddval.x φ X V
Assertion lcdvaddval φ F ˙ G X = F X + ˙ G X

Proof

Step Hyp Ref Expression
1 lcdvaddval.h H = LHyp K
2 lcdvaddval.u U = DVecH K W
3 lcdvaddval.v V = Base U
4 lcdvaddval.r R = Scalar U
5 lcdvaddval.a + ˙ = + R
6 lcdvaddval.c C = LCDual K W
7 lcdvaddval.d D = Base C
8 lcdvaddval.p ˙ = + C
9 lcdvaddval.k φ K HL W H
10 lcdvaddval.f φ F D
11 lcdvaddval.g φ G D
12 lcdvaddval.x φ X V
13 eqid LDual U = LDual U
14 eqid + LDual U = + LDual U
15 1 2 13 14 6 8 9 lcdvadd φ ˙ = + LDual U
16 15 oveqd φ F ˙ G = F + LDual U G
17 16 fveq1d φ F ˙ G X = F + LDual U G X
18 eqid LFnl U = LFnl U
19 1 2 9 dvhlmod φ U LMod
20 1 6 7 2 18 9 10 lcdvbaselfl φ F LFnl U
21 1 6 7 2 18 9 11 lcdvbaselfl φ G LFnl U
22 3 4 5 18 13 14 19 20 21 12 ldualvaddval φ F + LDual U G X = F X + ˙ G X
23 17 22 eqtrd φ F ˙ G X = F X + ˙ G X