Metamath Proof Explorer


Theorem lcdvs0N

Description: A scalar times the zero functional is the zero functional. (Contributed by NM, 20-Mar-2015) (New usage is discouraged.)

Ref Expression
Hypotheses lcdvs0.h H=LHypK
lcdvs0.u U=DVecHKW
lcdvs0.s S=ScalarU
lcdvs0.r R=BaseS
lcdvs0.c C=LCDualKW
lcdvs0.t ·˙=C
lcdvs0.o 0˙=0C
lcdvs0.k φKHLWH
lcdvs0.x φXR
Assertion lcdvs0N φX·˙0˙=0˙

Proof

Step Hyp Ref Expression
1 lcdvs0.h H=LHypK
2 lcdvs0.u U=DVecHKW
3 lcdvs0.s S=ScalarU
4 lcdvs0.r R=BaseS
5 lcdvs0.c C=LCDualKW
6 lcdvs0.t ·˙=C
7 lcdvs0.o 0˙=0C
8 lcdvs0.k φKHLWH
9 lcdvs0.x φXR
10 1 5 8 lcdlmod φCLMod
11 eqid ScalarC=ScalarC
12 eqid BaseScalarC=BaseScalarC
13 1 2 3 4 5 11 12 8 lcdsbase φBaseScalarC=R
14 9 13 eleqtrrd φXBaseScalarC
15 11 6 12 7 lmodvs0 CLModXBaseScalarCX·˙0˙=0˙
16 10 14 15 syl2anc φX·˙0˙=0˙