Metamath Proof Explorer


Theorem lcfrlem28

Description: Lemma for lcfr . TODO: This can be a hypothesis since the zero version of ( JY )I needs it. (Contributed by NM, 9-Mar-2015)

Ref Expression
Hypotheses lcfrlem17.h H = LHyp K
lcfrlem17.o ˙ = ocH K W
lcfrlem17.u U = DVecH K W
lcfrlem17.v V = Base U
lcfrlem17.p + ˙ = + U
lcfrlem17.z 0 ˙ = 0 U
lcfrlem17.n N = LSpan U
lcfrlem17.a A = LSAtoms U
lcfrlem17.k φ K HL W H
lcfrlem17.x φ X V 0 ˙
lcfrlem17.y φ Y V 0 ˙
lcfrlem17.ne φ N X N Y
lcfrlem22.b B = N X Y ˙ X + ˙ Y
lcfrlem24.t · ˙ = U
lcfrlem24.s S = Scalar U
lcfrlem24.q Q = 0 S
lcfrlem24.r R = Base S
lcfrlem24.j J = x V 0 ˙ v V ι k R | w ˙ x v = w + ˙ k · ˙ x
lcfrlem24.ib φ I B
lcfrlem24.l L = LKer U
lcfrlem25.d D = LDual U
lcfrlem28.jn φ J Y I Q
Assertion lcfrlem28 φ I 0 ˙

Proof

Step Hyp Ref Expression
1 lcfrlem17.h H = LHyp K
2 lcfrlem17.o ˙ = ocH K W
3 lcfrlem17.u U = DVecH K W
4 lcfrlem17.v V = Base U
5 lcfrlem17.p + ˙ = + U
6 lcfrlem17.z 0 ˙ = 0 U
7 lcfrlem17.n N = LSpan U
8 lcfrlem17.a A = LSAtoms U
9 lcfrlem17.k φ K HL W H
10 lcfrlem17.x φ X V 0 ˙
11 lcfrlem17.y φ Y V 0 ˙
12 lcfrlem17.ne φ N X N Y
13 lcfrlem22.b B = N X Y ˙ X + ˙ Y
14 lcfrlem24.t · ˙ = U
15 lcfrlem24.s S = Scalar U
16 lcfrlem24.q Q = 0 S
17 lcfrlem24.r R = Base S
18 lcfrlem24.j J = x V 0 ˙ v V ι k R | w ˙ x v = w + ˙ k · ˙ x
19 lcfrlem24.ib φ I B
20 lcfrlem24.l L = LKer U
21 lcfrlem25.d D = LDual U
22 lcfrlem28.jn φ J Y I Q
23 1 3 9 dvhlmod φ U LMod
24 eqid LFnl U = LFnl U
25 eqid 0 D = 0 D
26 eqid f LFnl U | ˙ ˙ L f = L f = f LFnl U | ˙ ˙ L f = L f
27 1 2 3 4 5 14 15 17 6 24 20 21 25 26 18 9 11 lcfrlem10 φ J Y LFnl U
28 15 16 6 24 lfl0 U LMod J Y LFnl U J Y 0 ˙ = Q
29 23 27 28 syl2anc φ J Y 0 ˙ = Q
30 fveqeq2 I = 0 ˙ J Y I = Q J Y 0 ˙ = Q
31 29 30 syl5ibrcom φ I = 0 ˙ J Y I = Q
32 31 necon3d φ J Y I Q I 0 ˙
33 22 32 mpd φ I 0 ˙