Metamath Proof Explorer


Theorem lcmfcllem

Description: Lemma for lcmfn0cl and dvdslcmf . (Contributed by AV, 21-Aug-2020) (Proof shortened by AV, 16-Sep-2020)

Ref Expression
Assertion lcmfcllem ZZFin0Zlcm_Zn|mZmn

Proof

Step Hyp Ref Expression
1 lcmfn0val ZZFin0Zlcm_Z=supn|mZmn<
2 ssrab2 n|mZmn
3 nnuz =1
4 2 3 sseqtri n|mZmn1
5 fissn0dvdsn0 ZZFin0Zn|mZmn
6 infssuzcl n|mZmn1n|mZmnsupn|mZmn<n|mZmn
7 4 5 6 sylancr ZZFin0Zsupn|mZmn<n|mZmn
8 1 7 eqeltrd ZZFin0Zlcm_Zn|mZmn