Metamath Proof Explorer


Theorem lcvexch

Description: Subspaces satisfy the exchange axiom. Lemma 7.5 of MaedaMaeda p. 31. ( cvexchi analog.) TODO: combine some lemmas. (Contributed by NM, 10-Jan-2015)

Ref Expression
Hypotheses lcvexch.s S=LSubSpW
lcvexch.p ˙=LSSumW
lcvexch.c C=LW
lcvexch.w φWLMod
lcvexch.t φTS
lcvexch.u φUS
Assertion lcvexch φTUCUTCT˙U

Proof

Step Hyp Ref Expression
1 lcvexch.s S=LSubSpW
2 lcvexch.p ˙=LSSumW
3 lcvexch.c C=LW
4 lcvexch.w φWLMod
5 lcvexch.t φTS
6 lcvexch.u φUS
7 4 adantr φTUCUWLMod
8 5 adantr φTUCUTS
9 6 adantr φTUCUUS
10 simpr φTUCUTUCU
11 1 2 3 7 8 9 10 lcvexchlem5 φTUCUTCT˙U
12 4 adantr φTCT˙UWLMod
13 5 adantr φTCT˙UTS
14 6 adantr φTCT˙UUS
15 simpr φTCT˙UTCT˙U
16 1 2 3 12 13 14 15 lcvexchlem4 φTCT˙UTUCU
17 11 16 impbida φTUCUTCT˙U