Description: Subspaces satisfy the exchange axiom. Lemma 7.5 of MaedaMaeda p. 31. ( cvexchi analog.) TODO: combine some lemmas. (Contributed by NM, 10-Jan-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lcvexch.s | |
|
lcvexch.p | |
||
lcvexch.c | |
||
lcvexch.w | |
||
lcvexch.t | |
||
lcvexch.u | |
||
Assertion | lcvexch | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lcvexch.s | |
|
2 | lcvexch.p | |
|
3 | lcvexch.c | |
|
4 | lcvexch.w | |
|
5 | lcvexch.t | |
|
6 | lcvexch.u | |
|
7 | 4 | adantr | |
8 | 5 | adantr | |
9 | 6 | adantr | |
10 | simpr | |
|
11 | 1 2 3 7 8 9 10 | lcvexchlem5 | |
12 | 4 | adantr | |
13 | 5 | adantr | |
14 | 6 | adantr | |
15 | simpr | |
|
16 | 1 2 3 12 13 14 15 | lcvexchlem4 | |
17 | 11 16 | impbida | |