Metamath Proof Explorer


Theorem legid

Description: Reflexivity of the less-than relationship. Proposition 5.7 of Schwabhauser p. 42. (Contributed by Thierry Arnoux, 27-Jun-2019)

Ref Expression
Hypotheses legval.p P=BaseG
legval.d -˙=distG
legval.i I=ItvG
legval.l ˙=𝒢G
legval.g φG𝒢Tarski
legid.a φAP
legid.b φBP
Assertion legid φA-˙B˙A-˙B

Proof

Step Hyp Ref Expression
1 legval.p P=BaseG
2 legval.d -˙=distG
3 legval.i I=ItvG
4 legval.l ˙=𝒢G
5 legval.g φG𝒢Tarski
6 legid.a φAP
7 legid.b φBP
8 1 2 3 5 6 7 tgbtwntriv2 φBAIB
9 eqidd φA-˙B=A-˙B
10 eleq1 x=BxAIBBAIB
11 oveq2 x=BA-˙x=A-˙B
12 11 eqeq2d x=BA-˙B=A-˙xA-˙B=A-˙B
13 10 12 anbi12d x=BxAIBA-˙B=A-˙xBAIBA-˙B=A-˙B
14 13 rspcev BPBAIBA-˙B=A-˙BxPxAIBA-˙B=A-˙x
15 7 8 9 14 syl12anc φxPxAIBA-˙B=A-˙x
16 1 2 3 4 5 6 7 6 7 legov φA-˙B˙A-˙BxPxAIBA-˙B=A-˙x
17 15 16 mpbird φA-˙B˙A-˙B