Metamath Proof Explorer


Theorem leltadd

Description: Adding both sides of two orderings. (Contributed by NM, 15-Aug-2008)

Ref Expression
Assertion leltadd ABCDACB<DA+B<C+D

Proof

Step Hyp Ref Expression
1 ltleadd BADCB<DACB+A<D+C
2 1 ancomsd BADCACB<DB+A<D+C
3 2 ancom2s BACDACB<DB+A<D+C
4 3 ancom1s ABCDACB<DB+A<D+C
5 recn AA
6 recn BB
7 addcom ABA+B=B+A
8 5 6 7 syl2an ABA+B=B+A
9 recn CC
10 recn DD
11 addcom CDC+D=D+C
12 9 10 11 syl2an CDC+D=D+C
13 8 12 breqan12d ABCDA+B<C+DB+A<D+C
14 4 13 sylibrd ABCDACB<DA+B<C+D