Metamath Proof Explorer


Theorem lgamcvg

Description: The series G converges to log_G ( A ) + log ( A ) . (Contributed by Mario Carneiro, 6-Jul-2017)

Ref Expression
Hypotheses lgamcvg.g G=mAlogm+1mlogAm+1
lgamcvg.a φA
Assertion lgamcvg φseq1+GlogΓA+logA

Proof

Step Hyp Ref Expression
1 lgamcvg.g G=mAlogm+1mlogAm+1
2 lgamcvg.a φA
3 eqid x|xyk01yx+k=x|xyk01yx+k
4 3 2 1 lgamcvglem φlogΓAseq1+GlogΓA+logA
5 4 simprd φseq1+GlogΓA+logA