Metamath Proof Explorer


Theorem lgsfcl

Description: Closure of the function F which defines the Legendre symbol at the primes. (Contributed by Mario Carneiro, 4-Feb-2015)

Ref Expression
Hypothesis lgsval.1 F=nifnifn=2if2A0ifAmod81711An12+1modn1npCntN1
Assertion lgsfcl ANN0F:

Proof

Step Hyp Ref Expression
1 lgsval.1 F=nifnifn=2if2A0ifAmod81711An12+1modn1npCntN1
2 eqid x|x1=x|x1
3 1 2 lgsfcl2 ANN0F:x|x1
4 ssrab2 x|x1
5 fss F:x|x1x|x1F:
6 3 4 5 sylancl ANN0F: