Metamath Proof Explorer


Theorem lgsfval

Description: Value of the function F which defines the Legendre symbol at the primes. (Contributed by Mario Carneiro, 4-Feb-2015)

Ref Expression
Hypothesis lgsval.1 F=nifnifn=2if2A0ifAmod81711An12+1modn1npCntN1
Assertion lgsfval MFM=ifMifM=2if2A0ifAmod81711AM12+1modM1MpCntN1

Proof

Step Hyp Ref Expression
1 lgsval.1 F=nifnifn=2if2A0ifAmod81711An12+1modn1npCntN1
2 eleq1 n=MnM
3 eqeq1 n=Mn=2M=2
4 oveq1 n=Mn1=M1
5 4 oveq1d n=Mn12=M12
6 5 oveq2d n=MAn12=AM12
7 6 oveq1d n=MAn12+1=AM12+1
8 id n=Mn=M
9 7 8 oveq12d n=MAn12+1modn=AM12+1modM
10 9 oveq1d n=MAn12+1modn1=AM12+1modM1
11 3 10 ifbieq2d n=Mifn=2if2A0ifAmod81711An12+1modn1=ifM=2if2A0ifAmod81711AM12+1modM1
12 oveq1 n=MnpCntN=MpCntN
13 11 12 oveq12d n=Mifn=2if2A0ifAmod81711An12+1modn1npCntN=ifM=2if2A0ifAmod81711AM12+1modM1MpCntN
14 2 13 ifbieq1d n=Mifnifn=2if2A0ifAmod81711An12+1modn1npCntN1=ifMifM=2if2A0ifAmod81711AM12+1modM1MpCntN1
15 ovex ifM=2if2A0ifAmod81711AM12+1modM1MpCntNV
16 1ex 1V
17 15 16 ifex ifMifM=2if2A0ifAmod81711AM12+1modM1MpCntN1V
18 14 1 17 fvmpt MFM=ifMifM=2if2A0ifAmod81711AM12+1modM1MpCntN1