Description: The Legendre (Jacobi) symbol is preserved under multiplication with a square of an integer coprime to the second argument. Theorem 9.9(d) in ApostolNT p. 188. (Contributed by AV, 20-Jul-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | lgsmulsqcoprm | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zsqcl | |
|
2 | 1 | adantr | |
3 | simpl | |
|
4 | simpl | |
|
5 | 2 3 4 | 3anim123i | |
6 | zcn | |
|
7 | sqne0 | |
|
8 | 6 7 | syl | |
9 | 8 | biimpar | |
10 | simpr | |
|
11 | 9 10 | anim12i | |
12 | 11 | 3adant3 | |
13 | lgsdir | |
|
14 | 5 12 13 | syl2anc | |
15 | 3anass | |
|
16 | 15 | biimpri | |
17 | 16 | 3adant2 | |
18 | lgssq | |
|
19 | 17 18 | syl | |
20 | 19 | oveq1d | |
21 | 3 4 | anim12i | |
22 | 21 | 3adant1 | |
23 | lgscl | |
|
24 | 22 23 | syl | |
25 | 24 | zcnd | |
26 | 25 | mullidd | |
27 | 14 20 26 | 3eqtrd | |