Metamath Proof Explorer


Theorem lighneallem1

Description: Lemma 1 for lighneal . (Contributed by AV, 11-Aug-2021)

Ref Expression
Assertion lighneallem1 P=2MN2N1PM

Proof

Step Hyp Ref Expression
1 2z 2
2 simp2 P=2MNM
3 iddvdsexp 2M22M
4 1 2 3 sylancr P=2MN22M
5 oveq1 P=2PM=2M
6 5 breq2d P=22PM22M
7 6 3ad2ant1 P=2MN2PM22M
8 4 7 mpbird P=2MN2PM
9 iddvdsexp 2N22N
10 1 9 mpan N22N
11 10 notnotd N¬¬22N
12 2nn 2
13 12 a1i N2
14 nnnn0 NN0
15 13 14 nnexpcld N2N
16 15 nnzd N2N
17 oddm1even 2N¬22N22N1
18 16 17 syl N¬22N22N1
19 11 18 mtbid N¬22N1
20 19 3ad2ant3 P=2MN¬22N1
21 nbrne1 2PM¬22N1PM2N1
22 8 20 21 syl2anc P=2MNPM2N1
23 22 necomd P=2MN2N1PM