Metamath Proof Explorer


Theorem lighneallem1

Description: Lemma 1 for lighneal . (Contributed by AV, 11-Aug-2021)

Ref Expression
Assertion lighneallem1 P = 2 M N 2 N 1 P M

Proof

Step Hyp Ref Expression
1 2z 2
2 simp2 P = 2 M N M
3 iddvdsexp 2 M 2 2 M
4 1 2 3 sylancr P = 2 M N 2 2 M
5 oveq1 P = 2 P M = 2 M
6 5 breq2d P = 2 2 P M 2 2 M
7 6 3ad2ant1 P = 2 M N 2 P M 2 2 M
8 4 7 mpbird P = 2 M N 2 P M
9 iddvdsexp 2 N 2 2 N
10 1 9 mpan N 2 2 N
11 10 notnotd N ¬ ¬ 2 2 N
12 2nn 2
13 12 a1i N 2
14 nnnn0 N N 0
15 13 14 nnexpcld N 2 N
16 15 nnzd N 2 N
17 oddm1even 2 N ¬ 2 2 N 2 2 N 1
18 16 17 syl N ¬ 2 2 N 2 2 N 1
19 11 18 mtbid N ¬ 2 2 N 1
20 19 3ad2ant3 P = 2 M N ¬ 2 2 N 1
21 nbrne1 2 P M ¬ 2 2 N 1 P M 2 N 1
22 8 20 21 syl2anc P = 2 M N P M 2 N 1
23 22 necomd P = 2 M N 2 N 1 P M