Metamath Proof Explorer


Theorem liminfcl

Description: Closure of the inferior limit. (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Assertion liminfcl FVlim infF*

Proof

Step Hyp Ref Expression
1 eqid ksupFk+∞**<=ksupFk+∞**<
2 1 liminfval FVlim infF=supranksupFk+∞**<*<
3 nfv kFV
4 inss2 Fk+∞**
5 infxrcl Fk+∞**supFk+∞**<*
6 4 5 ax-mp supFk+∞**<*
7 6 a1i FVksupFk+∞**<*
8 3 1 7 rnmptssd FVranksupFk+∞**<*
9 8 supxrcld FVsupranksupFk+∞**<*<*
10 2 9 eqeltrd FVlim infF*