Metamath Proof Explorer


Theorem limsupequz

Description: Two functions that are eventually equal to one another have the same superior limit. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses limsupequz.1 k φ
limsupequz.2 _ k F
limsupequz.3 _ k G
limsupequz.4 φ M
limsupequz.5 φ F Fn M
limsupequz.6 φ N
limsupequz.7 φ G Fn N
limsupequz.8 φ K
limsupequz.9 φ k K F k = G k
Assertion limsupequz φ lim sup F = lim sup G

Proof

Step Hyp Ref Expression
1 limsupequz.1 k φ
2 limsupequz.2 _ k F
3 limsupequz.3 _ k G
4 limsupequz.4 φ M
5 limsupequz.5 φ F Fn M
6 limsupequz.6 φ N
7 limsupequz.7 φ G Fn N
8 limsupequz.8 φ K
9 limsupequz.9 φ k K F k = G k
10 nfv j φ
11 nfv k j K
12 1 11 nfan k φ j K
13 nfcv _ k j
14 2 13 nffv _ k F j
15 3 13 nffv _ k G j
16 14 15 nfeq k F j = G j
17 12 16 nfim k φ j K F j = G j
18 eleq1w k = j k K j K
19 18 anbi2d k = j φ k K φ j K
20 fveq2 k = j F k = F j
21 fveq2 k = j G k = G j
22 20 21 eqeq12d k = j F k = G k F j = G j
23 19 22 imbi12d k = j φ k K F k = G k φ j K F j = G j
24 17 23 9 chvarfv φ j K F j = G j
25 10 4 5 6 7 8 24 limsupequzlem φ lim sup F = lim sup G