Metamath Proof Explorer


Theorem limsuplesup

Description: An upper bound for the superior limit. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses limsuplesup.1 φFV
limsuplesup.2 φK
Assertion limsuplesup φlim supFsupFK+∞**<

Proof

Step Hyp Ref Expression
1 limsuplesup.1 φFV
2 limsuplesup.2 φK
3 eqid ksupFk+∞**<=ksupFk+∞**<
4 3 limsupval FVlim supF=supranksupFk+∞**<*<
5 1 4 syl φlim supF=supranksupFk+∞**<*<
6 nfv kφ
7 inss2 Fk+∞**
8 7 a1i φkFk+∞**
9 8 supxrcld φksupFk+∞**<*
10 inss2 FK+∞**
11 10 a1i φFK+∞**
12 11 supxrcld φsupFK+∞**<*
13 oveq1 k=Kk+∞=K+∞
14 13 imaeq2d k=KFk+∞=FK+∞
15 14 ineq1d k=KFk+∞*=FK+∞*
16 15 supeq1d k=KsupFk+∞**<=supFK+∞**<
17 6 9 2 12 16 infxrlbrnmpt2 φsupranksupFk+∞**<*<supFK+∞**<
18 5 17 eqbrtrd φlim supFsupFK+∞**<