Metamath Proof Explorer


Theorem limsupresuz

Description: If the real part of the domain of a function is a subset of the integers, the superior limit doesn't change when the function is restricted to an upper set of integers. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses limsupresuz.m φM
limsupresuz.z Z=M
limsupresuz.f φFV
limsupresuz.d φdomF
Assertion limsupresuz φlim supFZ=lim supF

Proof

Step Hyp Ref Expression
1 limsupresuz.m φM
2 limsupresuz.z Z=M
3 limsupresuz.f φFV
4 limsupresuz.d φdomF
5 rescom FZ=FZ
6 5 fveq2i lim supFZ=lim supFZ
7 6 a1i φlim supFZ=lim supFZ
8 relres RelF
9 8 a1i φRelF
10 relssres RelFdomFF=F
11 9 4 10 syl2anc φF=F
12 11 eqcomd φF=F
13 12 reseq1d φFM+∞=FM+∞
14 resres FM+∞=FM+∞
15 14 a1i φFM+∞=FM+∞
16 1 2 uzinico φZ=M+∞
17 16 eqcomd φM+∞=Z
18 17 reseq2d φFM+∞=FZ
19 13 15 18 3eqtrrd φFZ=FM+∞
20 19 fveq2d φlim supFZ=lim supFM+∞
21 1 zred φM
22 eqid M+∞=M+∞
23 3 resexd φFV
24 21 22 23 limsupresico φlim supFM+∞=lim supF
25 20 24 eqtrd φlim supFZ=lim supF
26 7 25 eqtrd φlim supFZ=lim supF
27 3 resexd φFZV
28 27 limsupresre φlim supFZ=lim supFZ
29 3 limsupresre φlim supF=lim supF
30 26 28 29 3eqtr3d φlim supFZ=lim supF