Metamath Proof Explorer


Theorem lindflbs

Description: Conditions for an independent family to be a basis. (Contributed by Thierry Arnoux, 21-Jul-2023)

Ref Expression
Hypotheses lindflbs.b B = Base W
lindflbs.k K = Base F
lindflbs.r S = Scalar W
lindflbs.t · ˙ = W
lindflbs.z O = 0 W
lindflbs.y 0 ˙ = 0 S
lindflbs.n N = LSpan W
lindflbs.1 φ W LMod
lindflbs.2 φ S NzRing
lindflbs.3 φ I V
lindflbs.4 φ F : I 1-1 B
Assertion lindflbs φ ran F LBasis W F LIndF W N ran F = B

Proof

Step Hyp Ref Expression
1 lindflbs.b B = Base W
2 lindflbs.k K = Base F
3 lindflbs.r S = Scalar W
4 lindflbs.t · ˙ = W
5 lindflbs.z O = 0 W
6 lindflbs.y 0 ˙ = 0 S
7 lindflbs.n N = LSpan W
8 lindflbs.1 φ W LMod
9 lindflbs.2 φ S NzRing
10 lindflbs.3 φ I V
11 lindflbs.4 φ F : I 1-1 B
12 ssv ran F V
13 f1ssr F : I 1-1 B ran F V F : I 1-1 V
14 11 12 13 sylancl φ F : I 1-1 V
15 f1dm F : I 1-1 B dom F = I
16 f1eq2 dom F = I F : dom F 1-1 V F : I 1-1 V
17 11 15 16 3syl φ F : dom F 1-1 V F : I 1-1 V
18 14 17 mpbird φ F : dom F 1-1 V
19 3 islindf3 W LMod S NzRing F LIndF W F : dom F 1-1 V ran F LIndS W
20 8 9 19 syl2anc φ F LIndF W F : dom F 1-1 V ran F LIndS W
21 18 20 mpbirand φ F LIndF W ran F LIndS W
22 21 anbi1d φ F LIndF W N ran F = B ran F LIndS W N ran F = B
23 eqid LBasis W = LBasis W
24 1 23 7 islbs4 ran F LBasis W ran F LIndS W N ran F = B
25 22 24 syl6rbbr φ ran F LBasis W F LIndF W N ran F = B