Metamath Proof Explorer


Theorem lindslinindimp2lem2

Description: Lemma 2 for lindslinindsimp2 . (Contributed by AV, 25-Apr-2019)

Ref Expression
Hypotheses lindslinind.r R=ScalarM
lindslinind.b B=BaseR
lindslinind.0 0˙=0R
lindslinind.z Z=0M
lindslinind.y Y=invgRfx
lindslinind.g G=fSx
Assertion lindslinindimp2lem2 SVMLModSBaseMxSfBSGBSx

Proof

Step Hyp Ref Expression
1 lindslinind.r R=ScalarM
2 lindslinind.b B=BaseR
3 lindslinind.0 0˙=0R
4 lindslinind.z Z=0M
5 lindslinind.y Y=invgRfx
6 lindslinind.g G=fSx
7 elmapi fBSf:SB
8 7 3ad2ant3 SBaseMxSfBSf:SB
9 8 adantl SVMLModSBaseMxSfBSf:SB
10 difss SxS
11 fssres f:SBSxSfSx:SxB
12 9 10 11 sylancl SVMLModSBaseMxSfBSfSx:SxB
13 6 feq1i G:SxBfSx:SxB
14 12 13 sylibr SVMLModSBaseMxSfBSG:SxB
15 2 fvexi BV
16 difexg SVSxV
17 16 ad2antrr SVMLModSBaseMxSfBSSxV
18 elmapg BVSxVGBSxG:SxB
19 15 17 18 sylancr SVMLModSBaseMxSfBSGBSxG:SxB
20 14 19 mpbird SVMLModSBaseMxSfBSGBSx