Description: Lemma 2 for lindslinindsimp2 . (Contributed by AV, 25-Apr-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lindslinind.r | |
|
lindslinind.b | |
||
lindslinind.0 | |
||
lindslinind.z | |
||
lindslinind.y | |
||
lindslinind.g | |
||
Assertion | lindslinindimp2lem2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lindslinind.r | |
|
2 | lindslinind.b | |
|
3 | lindslinind.0 | |
|
4 | lindslinind.z | |
|
5 | lindslinind.y | |
|
6 | lindslinind.g | |
|
7 | elmapi | |
|
8 | 7 | 3ad2ant3 | |
9 | 8 | adantl | |
10 | difss | |
|
11 | fssres | |
|
12 | 9 10 11 | sylancl | |
13 | 6 | feq1i | |
14 | 12 13 | sylibr | |
15 | 2 | fvexi | |
16 | difexg | |
|
17 | 16 | ad2antrr | |
18 | elmapg | |
|
19 | 15 17 18 | sylancr | |
20 | 14 19 | mpbird | |