Metamath Proof Explorer


Theorem line

Description: The line passing through the two different points X and Y in a left module (or any extended structure having a base set, an addition, and a scalar multiplication). (Contributed by AV, 14-Jan-2023)

Ref Expression
Hypotheses lines.b B=BaseW
lines.l L=LineMW
lines.s S=ScalarW
lines.k K=BaseS
lines.p ·˙=W
lines.a +˙=+W
lines.m -˙=-S
lines.1 1˙=1S
Assertion line WVXBYBXYXLY=pB|tKp=1˙-˙t·˙X+˙t·˙Y

Proof

Step Hyp Ref Expression
1 lines.b B=BaseW
2 lines.l L=LineMW
3 lines.s S=ScalarW
4 lines.k K=BaseS
5 lines.p ·˙=W
6 lines.a +˙=+W
7 lines.m -˙=-S
8 lines.1 1˙=1S
9 1 2 3 4 5 6 7 8 lines WVL=xB,yBxpB|tKp=1˙-˙t·˙x+˙t·˙y
10 9 oveqd WVXLY=XxB,yBxpB|tKp=1˙-˙t·˙x+˙t·˙yY
11 10 adantr WVXBYBXYXLY=XxB,yBxpB|tKp=1˙-˙t·˙x+˙t·˙yY
12 eqidd WVXBYBXYxB,yBxpB|tKp=1˙-˙t·˙x+˙t·˙y=xB,yBxpB|tKp=1˙-˙t·˙x+˙t·˙y
13 oveq2 x=X1˙-˙t·˙x=1˙-˙t·˙X
14 oveq2 y=Yt·˙y=t·˙Y
15 13 14 oveqan12d x=Xy=Y1˙-˙t·˙x+˙t·˙y=1˙-˙t·˙X+˙t·˙Y
16 15 eqeq2d x=Xy=Yp=1˙-˙t·˙x+˙t·˙yp=1˙-˙t·˙X+˙t·˙Y
17 16 rexbidv x=Xy=YtKp=1˙-˙t·˙x+˙t·˙ytKp=1˙-˙t·˙X+˙t·˙Y
18 17 rabbidv x=Xy=YpB|tKp=1˙-˙t·˙x+˙t·˙y=pB|tKp=1˙-˙t·˙X+˙t·˙Y
19 18 adantl WVXBYBXYx=Xy=YpB|tKp=1˙-˙t·˙x+˙t·˙y=pB|tKp=1˙-˙t·˙X+˙t·˙Y
20 sneq x=Xx=X
21 20 difeq2d x=XBx=BX
22 21 adantl WVXBYBXYx=XBx=BX
23 simpr1 WVXBYBXYXB
24 id XYXY
25 24 necomd XYYX
26 25 anim2i YBXYYBYX
27 26 3adant1 XBYBXYYBYX
28 eldifsn YBXYBYX
29 27 28 sylibr XBYBXYYBX
30 29 adantl WVXBYBXYYBX
31 1 fvexi BV
32 31 rabex pB|tKp=1˙-˙t·˙X+˙t·˙YV
33 32 a1i WVXBYBXYpB|tKp=1˙-˙t·˙X+˙t·˙YV
34 12 19 22 23 30 33 ovmpodx WVXBYBXYXxB,yBxpB|tKp=1˙-˙t·˙x+˙t·˙yY=pB|tKp=1˙-˙t·˙X+˙t·˙Y
35 11 34 eqtrd WVXBYBXYXLY=pB|tKp=1˙-˙t·˙X+˙t·˙Y